AUTHOR
 TITLE

INSTITUTION
SPONS AGENCY
pub Date
NOTE
available from

Blank, Rolf K.; Gruebel, Doreen
State Indicators of Science and Mathematics Education 1903. State and National Trends: New Indicators from the 1991-1992 School Year.
Council of Chief State School Officers, Washington, DC. State Education Assessment Center.

National Science Foundation, Washington, D.C. 93
119p.; For the 1990 report, see ED 337345. Council of Chief State School Officers, State Education Assessment Center, One Massachusetts Avenue, N.W., Suite 700, Washington, DC 20001-1431 (\$15).
PUB TYPE Reports - Research/Technical (143) -- Statistical Data (110)

EDRS PRICE
DESCRIPTORS

MF01/PC05 Plus Postage.
Academic Achievement; Class Size; HEducational Assessment; 'Educational Trends; Elementary School Mathematics; Elementary School Science; Elementary School Students; Elementary Secondary Education; Enrollment Trends; Mathematics Achievement; 'Mathematics Education; Mathematics Teachers; Minority Groups; *National Surveys; *Science Education; Science Teachers; Secondary School Mathematics; Secondary School Science; Secondary School Students; Sex Differences; Tables (Data); Teacher Certification; Teacher Characteristics; Teacher Education; Teacher Supply and Demand; Time on Task
Council of Chief State School Officers; *Educational Indicators; National Assessment of Educational Progress; Science Achievement; *State Marhematics Assessments

ABSTRACT
The Council of Chief State School Officers (CCSSO) is helping develop 2 system of state-bystate and national indicators of the condition of science and mathematics education in an effort to assist local, state, and national policymakers in making informed decisions. The report, "State Indicators of Science and Mathematics Education-1990," established baseline data for this system of indicators. This report includes the trends analysis of state-by-state sciencemathematics indicators based on data collected from the National Assessment of Educational Progress (NAEP), the 1991 Schools and Staffing Survey, and CCSSO data collected from state departments of education. Current data is reported on five key educational indicators: student outcomes, curriculum, course enrollments, teacher supply and quaiity, and school conditions. Student outcome indicators include mathematics proficiency on NAEP and Advanced Placement results. Curriculum content indicators include an opportunity to learn index and teacher emphasis on areas of mathematics. Instructional time and participation indicators include elementary class time on science and mathematics, science and mathematics course enrollments, trends in course enrollments from 1990 to 1992, and equity in science and mathematics opportunities for studerits. Teacher quality, supply, and shortage indicators include teacher supply in mathematics and science, equity in the teaching force, and teacher preparation in science and mathematics. School condition indicators include class size, teachers' perceptions of the availability of materials and resources, and use of calculators. Appendices, making up half of the report, contain 39 tables with course enrollments in public schools and characteristics of teachers in public school by state, a technical appendix, and a directory of state course tities by reporting categories. Contains 75 references. (MDH)

State and National Trends: New Indicators from the 1991-92 School Year
"PERMISSION TO REPRODUCE THIS material has been granted by Rolf K. Blank

[^0]
Council of Chief State School Officers
 State Education Assessment Center
 State Indicatoris of Science andMathematics Education 1993

State and National Trends:
New Indicators from the 1991-92 School Year

Rolf K. Blank
Doreen Gruebel

The State Science and Mathematics Indicators are supported by a grant from the National Science Foundation. The indicators were developed and reported through the cooperation of 52 state education agencies and the National Center for Education Statistics of the U.S. Department of Education.

The Council of Chief State School Officers (CCSSO) is a nationwide non-profit organization of the 57 public officials who head departments of public education in every state, the District of Columbia, the Department of Defense Dependents Schools, and five extra-state jurisdictions. CCSSO seeks its members' consensus on major education issues and expresses their view to civic and professional organizations, to federal agencies, to Congress, and to the public. Through its structure of standing committees and special task forces, the Council responds to a broad range of concerns about education and provides leadership on major education issues. The State Education Assessment Center is a permanent, central part of the Council of Chief State School Officers. This Center was established through a resolurion by the membership of CCSSO in 1984.

The State Science and Mathematics Indicators were developed through cooperation of the Council with all of the state departments of education, the National Science Foundation, and the U.S. Department of Education. The Indicators were selected and designed to provide valid, comparable state-by-state and national data on the condition of science and mathematics education in elementary and secondary schools. Data are reported every two years using a consistent set of indicators.

The Council's work on Science and Mathematics Indicators is supported by a grant from the Division of Research, Evaluation, and Dissemination of the National Science Foundation, Education and Human Resources Directorate. The views or conclusions expressed in the report do not necessarily reflect the position of the National Science Foundation.

COUNCIL OF CHIEF STATE SCHOOL OFFICERS

Werner Rogers (Georgia), President
Alan Morgan (New Mexico), President-elect
Thomas S. Boysen (Kentucky)
Ted Sanders (Oho)
Co-Chairs, Task Force on Systemic Change for Improved Student Results

Gordon Ambach, Executive Director
Ramsay Selden, Director, State Education Assessment Center
Copies of this report may be ordered for $\$ 15.00$ per copy from:
Council of Chief State School Officers
State Education Assessment Center
One Massachusetts Avenue, NW, Suite 700
Washington, D.C. 20001-1431
Copyright 199.3 by the Council of Chief State School Officers, Washington. DC. All rights reserved with the exception of reproduction for educational purposes.

TABLE OF CONTENTS

Acknowledgements ii
List of Tables and Figures iii
OVERVIEW OF STATE INDICATORS OF SCIENCE AND MATHEMATICS EDUCATION-1993 1
Summary of Indicators for 1993 1
DESIGN FOR STATE SCIENCE AND MATHEMATICS INDICATORS 5
SCIENCE AND MATHEMATICS INDICATORS: 1993 9
Indicators of Student Outcomes 9
Mathematics Proficiency on NAEP 9
Advanced Placement Results 11
Indicators of Curriculum Content 13
Opportunity to Learn 13
Teacher Emphasis on Areas of Mathematics 13
Indicators of Instructional Time and Participation 15
Flementary Class Time on Science and Mathematics 15
Science and Mathematics Course Enrollments 17
Trends in Course Enrollments: 1990 to 1992 25
Equity in Science and Mathematics Opportunities 30
Indicators of Teacher Quality, Supply, and Shortage 35
Teacher Supply in Science and Mathematics 35
Equity in the Teaching Force 41
Teacher Preparation in Science and Mathematics 45
Indicators of School Conditions 53
Class Size. 53
Teachers' Perceptions of the Availability of Materials and Resources 53
Use of Calculators 55
SUMMARY: STATE AND NATIONAL POLICY ISSUES AND SCIENCE-MATHEMATICS INDICATORS 59
Advisors to the Project 61
Contact Persons in State Departments of Education 62
AFPENDIX A Tables with Course Enrollments in Public Schools by State 63
APPENDIX B Tables with Characteristics of Teachers in Public School by State 83
APPENDIX C Technical Appendix 105
APPENDIX D Directory of Statc Course Titles by Reporting Categories 107
REFERENCES 109

ACKNOWLEDGEMENTS

This report is the result of succes.jful cooperation of the Council of Chief Gtate School Officers with the state departments of education, the National Science Foundation (NSF), and the U.S. Department of Education. The State Science and Mathematics Indicators were initiated in 1986 as a result of the commitment of the National Science Foundation to improving the quality of information on science and mathematics education in the nation's schools. The Council's proposal to develop state-level indicators of science and mathematics education was made possible by the collective decision of the state superintendents and commissioners in 1984 to develop valid, comparable state-by-state data to assess educational progress.

The Science and Mathematics Indicators have received strong support from each of the state superintendents and commissioners. State data managers, curriculum specialists, and assessment directors have willingly given their time, expertise, and assistance to the project. State education staff have played active roles in the selection of indicators and design of a data reporting system, and some indicators are based on data from state education information systems.

The Council staff and the states have benefitted greatly from the insightful recommendations and suggestions of the Indicators advisors. The scientists, mathematicians, and education researchers who advised us have ensured that the indicators are soundly based on research and that they provide importani information for policy and program decisions.

The Council very much appreciates the strong support by the National Science Foundation for development and continuation of the State Science
and Mathernatics Indicators. We particularly acknowledge the leadership of Luther Williams, the NSF Assistant Director for Education and Human Resources; Kenneth Travers, head of the Division of Research, Evaluation, and Dissemination; and Larry Suter, our program officer, who has provided important guidance over the past two years. Susan Snyder of the NSF staff has offered very useful suggestions since the early stages of the project. Richard Berry (retired) was the NSF pregram officer when the state science and mathematics indicators were initially proposed and conceptuaized.

The National Center for Education Statistics (NCES) of the U.S. Department of Education provided state-by-state data analyses from the Schools and Staffing Survey for this report. Results from the NAEP Trial State Assessment in mathematics are also reported as state indicators. We very much appreciate the support and ssistance of NCES.

The Science and ilathematics Indicators were initiated by Ramsay Selden as part of the State Education Assessment Center's program of state education indicators. Iris Weiss of Horizon Research served as a Project consultant and had an important role in the selection of state indicators and the design for data reporting. Westat, Inc. provided expert assistance with the development of the data forms and analyzed data from the National Transcript Studies. Rolf Blank is the director of the Council's Science and Mathematics Indicators and Doreen Gruebel is the project assistant. Paula Delo produced this publication. Winifred Campbell assisted in the production.

LIST OF TABLES AND FIGURES

TABLES
Table 1
Table 2
Table 3-ATable 3-B
Table 4
Table 5
Table 6Table 7
Table $8 \quad$ Percentage of High School Students Taking Selected Science Coursesby Graduation (1991-92)23
Table 9 Percent Change in Students Taking Mathematics and Science Courses: 1990 to 1992 26
Table 10 Students Taking Advanced/Second-Year Marhematics and Science Courses: Enrollments Per 1,000 Grade 12 Students (October 1991) 27
Table 11 Percentage of Students Taking Mathematics Courses by State Graduation Requirements (1991-92) 29
Table 12 Percentage of Students Taking Science Courses by State Graduation Requirements (1991-92) 30
Table 13 Gender Differences in Students Taking Mathematics Courses (1991-92) 31
Table 14 Gender Differences in Students Taking Science Courses (1991-92) 32
Table 15 Change in Mathematics and Science Enrollments by Race/Ethnicity: 1982 to 1990 3.3
Table 16 High School Math and Science in Large Cities: Percentage • High School Students Taking Selected Mathematics and Science Courses by Graduation (1991-92) 34
Table 17 Number of Mathematics and Science Teachers in Grades 9-12 (1991-92) 36
Table 18 Mathematics and Science Student/Teacher Ratio in Grades 9-12 37
Table 19 Number of Mathematics and Science Teachers in Grades 7-8 (1991-92) 38
Table 20 Percentage of Mathematics and Science Teachers Over Age 50: High and Low States 40
Table 21 New High School Teachers in Science and Math (1991-92) 43
Table 22 Minority Teachers in Mathematics and Science by Minority Students in State 44
Table 23 Certification of Math and Science Teachers: Grades 9-12 46
Table 24 Percentage of Mathematics and Science Teachers with Major in Field, (Grac'es 9-12, Spring 1991) 49
Table 25 Average Class Size in Mathematics and Science and Percent Classes
Over 30 Students (Grades 9—12) 54

FIGURES

Figure 1 Priority State Indicators of Science and Mathematics Education 6
Figure 2 Elementary Class Time on Mathematics and Science 16
Figure 3 Percentage of High School Students Taking Algebra 2/Integrated Math 3 by Graduation (1991-92) 21
Figure 4 Percentage of High School Students Taking Chemistry by Graduation (1991-92) 24
Figure $5 \quad$ Opportunitics to Enroll in Science and Mathematics by School Sociocconomic Status (SES) and Racial Composition 33
Figure 6 Percentage of Teachers with Main Assignment; in Math and Science 35
Figure $7 \quad$ Percentage of Mathematics and Science Teachers Under Age 30 and Over Age 50 40
Figure $8 \quad$ Gender of Mathematics and Science Teachers 41
Figure 9 Percentage Female Teachers in Mathematics and Biology 42
Figure 10 Percentage of High School Mathematics and Science Teachers Not State Certified 45
Figure 11 Percentage of Students in Mathematics with Noncertified Teachers 47
Figure 12 Secondary Mathematics and Science Teachers' Qualifications by School Racial Composition and Type of Community 48
Figure 13 Change in Percentage of Teachers with Majors in Mathematics: 1988 to 1991 50
Figure 14 Change in Percentage of Teachers with Majors in Science: 1988 to 1991 51
Figure 15 Average Class Size in High School Mathematics and Science 55
Figure 16 Percentage of Students Taught by Teachers Reporting They Cet Some or None of the Materials and Resources They Need, by State Rank on Math Proficiency 56
Figure 17 Percentage of Students Allowed Unrestricted Use of Calculators in Math Class, by State Rank on Marh Proficiency 57

OVERVIEW OF STATE INDICATORS OF SCIENCE AND MATHEMATICS EDUCATION-1993

"The United States has established ambitious goals for student performance in mathematics and, science education and the opportunity students have to learn these subjects. To know whether we reach these goals, the nation and the states mest bave good reports on the current status of mathematics and science education and a uell developed system to trace progress ouer a decade. This report provides essential base line information for the work of the 199() s."

- Gordon Ambach, Executive Director, Council of Chief State School Officers.
"For the remainder of the decade and into the next century, our nation faces both challenge and opportunity in science and mathematics education. A national consensus has emerged that the United States must renew and improve its science and mathematics education enterprise. Our ultinnate goal is to create and sustain a national atmosphere that walues and encourages scientific thinking and scientific endeavors by all of our citizens. When we succeed, every student will be able to stud) mathematics and science and become knowledgeable in these vital areas."
- Lather Williams, Assistant Director for Education and Human Resources, National Science Foundation.

Improving student learning in mathematics and science has been declared a high priority for our elementary and secondary schools. The national educational goals of the President and Governors, set in 1989 , state that science and mathematics achievement of American high school graduates will be first in the world by the year 2000. The National Education, Goals Panel has established standards for measuring progress towards the goals, and the Panel strongly emphasizes that state and national efforts to improve science and mathematics education require a system of reliable indicators for tracking progress (NEGP, 1991; 1992).

The Council of Chief State School Officers is providing leadership in developing a system of state-bystate and national indicators of the condition of science and mathematics education. Since 1985, the Council has been a strong, advocate for improving the quality and comparability of assessments and data systems which can produce indicators of the health of our elementary and secondary schools. Through the support of the National Science Foundation, the Council and the states have established a network for developing and reporting science and mathematics indicators. The first product of this cooperative effort was State Indicators of Science and

Mathematics Education-1990 (Blank and Dalkilic, 1991), a report that established baseline data for a system of state and national indicators. The new report presented here includes the first trends analysis ever of state-by-state science-mathematics indicators and presents current data on indicators of student outcomes, curriculum, course enrollments, teacher supply and quality, and school conditions.

The Council's goal for the science and mathematics indicators is to assist national, state, and locial managers and policymakers in making informed decisions. Efforts to reform and restructure science and mathematics education need to be based on a sound assessment of current conditions, the rate of improvement, and problems in the system. This report focuses on science and mathematics indicators at state and national levels. The Council also encourages and assists states in reporting the science-mathematics indicators at district and school levels.

SUMMARY OF INDICATORS FOR 1993

Trends in Course Enrollments

- Mathematics. From 1990 to 1992, enrollments in higher level mathematics courses (above algebra 1) increased in three-fourths of the states. For example, the percent of students taking algebra 2 enrollments increased an average of 6 percent during the period. Nationally, 55 percent of students take algebra 2 by graduation, which indicates the proportion of graduates completing three high school mathematics courses.
- Science. Enrollments in higher level science courses (above first-year biology) increased in 80 percent of states from 1990 to 1992. For example, chemis ry enrollments increased an average of four percent, with increases in all but one state. Nationally, 49 percent of students take chemistry by graduation, which indicates the proportion of graduates completing three high school science courses.
- State policies. States with higher graduation requirements in mathematics and science (2.5 to 3 credits) had greater overall enrollments in science and mathematics and greater enrollments in chemistry, physics, and algebra 2 in 1992 than states with lower requirements (2 credits or less). The rate of enrollment increase from 1990 to 1992 was slightly greater for states with higher graduation requirements.

Gender and Race/Ethnic Trends in Course Enrollments

- Gender. Differences in advanced science and mathematics course taking by gender dectined slightly from 1990 to 1992, continuing a 10 -year pattern, In 1992, males and females had equivatent course enrollment rates up to the advanced levels of mathematics and science, in 20 reporting states. Females comprise 46 percent of students taking calculus, 52 percent taking chemistry, and 44 percent taking phesics. Nationally as of 1982 , females comprised 42 percent of students taking calculus, 48 percent taking chemistry, and 33 percent taking physics.
- Minority trends in science. Our schools made some progress in increasing the participation of minority students in science and mathematics during the 1980's. From 1982 to 1990, chemistry enrollments increased 24 percent among Hispanic students and 19 percent among African-Americans, hased on national sample data. In 1990, 40 percent of students in these groups were taking chemistry by graduation. By comparison, chemistry enrollments increased 18 percent among whites (to 52 percent), and 13 percent among Asian-Americans (to 64 percent).
- Minority trends in mathematics. Algebra 2 enrollments increased 18 percent among Hispanic students and 1.5 percent among A frican-Americans from 1982 to 1990 . In 1990, 39 percent of these minority students were taking, algehra 2 by graduation. Algebra 2 enrollments went up 13 percent among whites (to 5.2 percent), and 3 percent among Asian-Americans (to 59 percent).

Student Achievement Trends

- Mathematics NAEP by state. The 1992 National Assessment of Educational Progress (NAEP) in mathematics showed that 18 states had significant improvement in student proficiency at grade 8 since 1990. Average mathematics proficiency declined in no states. Nationally, 61 percent of grade 8 students scored at or above the Basic achievement level, 2.3 percent were at or above the Proficient level, and 3 percent were at or above the Advanced level.
- Minority students. Only rwo states had significant improvement in African-American students' mathematics proficiency on NAEP, and four states had improved proficiency among Hispanic students.
- Advanced Placement examinations. Four percent of grade 12 students took the Advanced Placement (AP) calculus examination in 1992, and 4.4 percent took an AP examination in biology, chemistry, or physics. The percent of 12 th grade students taking an

AP exam in science or mathematics varied by state from less than 1 percent to over 6 percent. Over 60 percent of students taking AP exams in calculus or biology received a qualified score.

Elementary Class Time

- The average grade 4-6 class spends 4.8 hours per week on mathematics and 3.1 hours on science, according to elementary teachers in the 1991 Schools and Staffing Survey. From 1988 to 1991 , the average class time on grade 4-6 science increased by 10 minutes per week, while average math time did not change.
- State variation. Class time on grade 4-6 mathematics varied by state from an average of 3.8 hours per week (4.5 minutes per day) to over 5.5 hours per week. Science class time varied by state from an average of 2.3 hours per week (28 minutes per day) to 4.3 hours per week.

Trends in Supply and Preparation of Teachers

- Number of teachers. The nation's public high schools had 117,000 teachers of mathematics in fall 1991 and 94,000 teachers of science in biology, chemistry, physics, or earth science, based on state education data. The number of mathematics teachers increased 7 percent from 1990 to 1992 as compared to a 3 percent increase in mathematics course enrollments. The number of science teachers remained constant, while enrollments increased 3 percent.
- Major in field. The percent of mathematics teachers in the nation with a major in mathematics or mathematics education did not change from 1988 to 1991 (remaining at 63 percent), according to data from the NCES Schools and Staffing Survey. The percent of science teachers with a science or science education major increased by 6 percent (to 70 percent). The percent of teachers with a mathematics major varies by state from 25 percent to 87 percent, and the percent of teachers with a science major varies from 41 percent to 85 percent.
- Students per teacher. A comparison of the science and mathematics teaching force in the nation (estimated FTEs) with the high school student population indicates: 149 students per mathematics ieacher, 217 students per biology teacher, 447 students per chemistry teacher, and 971 students per physics teacher. The students/teacher ratios vary widely by state.
- New science and math teachers. Nationally, 5 percent of high school mathematics teachers were new, first-year teachers and 7 percent were new hires in 1991-92. In science, 4 percent of teachers were in
their first-year of teaching and 7 percent were new hires. Only five states had more than 6 percent new, first-year teachers. In nine states, over half of new hires were experienced teachers.
- Grades 7 and 8 teachers. In fall 1991, there were 63,100 teachers of mathematics and 55,600 teachers of science in grades 7-8, according, to state data.

Other Science and Mathematiss indicators

High School Mathematics Enrollments. In October

 1991, 87 percent of public high school students were taking a mathematics course, which represented a a 3 percent increase from fall 1989. Slightly more than one-third of students were taking higher level courses (above algehra 1), one in five were taking first-ycar algebra or integrated mathematics, and une fourth of high school students were taking prealgebra or general mathematics courses.By high school graduation, the Council estimates that 91 percent of students take algehra 1,61 percent take geometry, 55 percent take algehra 2, 29 percent take trigonometry or precalculus, and 11 percent take calculus, Slightly more than half of graduates take three years of high school mathematics by the time they graduate. Course enrollments vary by state at all levels; for example, enrollments in algelora 2 by graduation vary by state from 31 to 73 percent.

High School Science. In October 1991, a total of 7.5 percent of public high school students were taking a science course, which represented a 3 percent increase from fall 1989. One-fourth of students were taking higher level science courses (above first-ycar biology), one-fourth were taking first-year biology, and slightly less than one-fourth were taking an introductory course in earth, physical, or general science or integrated science.

By high school graduation, the C.ouncil estimates that 95 percent of students take first-year biology. 49 percent take chemistry, and 21 percent take physics. One-half of U.S. students take three years of high school science by graduation. Course enrollments in science vary by state at all levels; for example, enrollments in chemistry hy graduation vary by state from 33 to 67 percent.

Teacher Certification. Among high school teachers in 32 states, 12 percent of mathematics teachers were not state certified in mathematics, and 9 percent of biology teachers, 8 percent of chemistry teachers, 13 percent of physics teachers, and 19 percent of earth science teachers were not state certified in these fields. These percentages include teachers with an emergency or temporary certification or certification in another field. Compared to 1990 state data, the percentage of noncertified mathematics teachers
increased by 3 pereent and the percent of noncertified science teachers did not change. One-third of states reported more than 5 percent noncertified teachers in math or science, and one-fifth of states have over 10 persent noncertified teachers in math or science.

Among teachers in grades 7 and 8, 10 percent of: mathematics teachers and 11 percent of science teachers were not state certified in these fields. State data also show that 24 percentr of grade 7-8 mathematics teachers and 19 percent of science teachers were certified in general elementary, middle grades, or secondary teaching.

Equity in the Teaching Force-Gender: State data reported to (CSSO) show that the majority of high school science and mathematics teachers are male, but the gender distribution varies by field. In mathematics, 4.5 percent of teachers are female, while 22 percent of physics teachers and 37 percent of biology teachers are female. The percent of female teachers in mathematics varies by state from 21 to 69 percent, and the percent of temales in physics teaching varies from 10 to 49 percent.

Equity in the Teaching Force-Race/Etbnicity. In our clementary and secondary schools, 31 percent of the student population is from a race/ethnic minority group. This statistic can be compared to state data which show 11 percent of high school mathematics teachers and 8 percent of science teachers from a minority group. In virtually all states there is a large disparity hetween the supply of minority mathematics and science teachers and the population of minority students. The percent of new minority teachers is slightly greater than the current minority representation in the science-mathematics teaching force, and the percent of female teachers is substantially greater.

New Teachers in Large Cities. The Council conducted a small study of science and mathematics indicators for large city schools in five states. The data for new science and math teachers confirmed that schools in large cities have difficulty in attracting and hiring science and mathematics teachers. The percent of new, first-year teachers in large city schools is the same as state averages- 5 percent-hut city schools have fewer experienced teachers among all newly hired teachers. The initial results indicate that a larger portion of the teachers hired in large city schools are first-year teachers.

Teacher Age. The distribution of teacher ages is a uscful indicator of state teacher supply and potential shortage. A total of 19 percent of mathematics teachers and 22 percent of science teachers are over age 50 . By comparison, 21 percent of all high school teachers are over age 50 . The proportion of mathematics and science teachers over age 50 varies by
state from 10 percent to over 30 percent.
Class Size in Mathematics and Science. The average class in high school mathematics varies by state from 16 to 26 students, and the average science class varies by state from 1 to to 27 students. In advanced mathematics, five states have over 20 percent of classes with more than 30 students, and 12 states have less than 1 percent with more chan 30 students. From 1988 to 1991, the average mathematics class remained at 21 students, while the average science class increased from 22 to 2.3 students.

Instructional Materials and Resources. In the 1990 NAEP mathematics assessment, teachers reported their views on availability of materials and resources they need to teach grade 8 mathematics. The percent of mathematics teachers reporting they had "some or none" of needed materials and resources varied by state from over 4.5 percent of teachers to less than 20 percent. A high percentage of teachers in a state reporting a problem with materials and resources was associated with lower average state mathematics proficiency on NAEP.

Use of Calculators. Nineteen percent of grade 8 students reported having unrestricted use of hand cal. culators in their mathematics classes, on the 1990 NAEP in mathematics. The level of unrestricted use of calculators varied by state from 2 to 38 percent, and the percent of students with unrestricted calculator use was positively associated with average state mathematics proficiency.

Summary

The science and mathematics indicators presented in this report provide state-hy-state comparisons and national indicators as of the 1991-92 school year. State trends in key science-mathematics indicators are analyzed from 1990 to 1992, and national trends are analyzed from 1982 to 1992. The indicators are intended for use by policymakers, educators, and researchers. Many of the state-level indicators are reported here for the first time, and the Council encourages others to use indicators and state data for further analyses within states and among states.

DESIGN FOR STATE SCIENCE AND MATHEMATICS INDICATORS

The Council of Chief State School Officers (CCSSO) has worked with the state departments of education since 1986 to develop a system of Science and Mathenatics Indicators. The central management and reporting of the indicators at the Council has been supported by the National Science Foundation (NSF). The states have collected and analyzed data and disseminated the science-mathematics indicator results to policymakers and educators. The National Center for Education Statistics (NCES) of the U.S. Department of Education has assisted in the development of the system of science-mathematics indicators through national surveys analyzed and reported at the state level.

Interests in Education Indicators

In 1984, the Council changed a long-standing resistance to state-level comparisons to approve an overall policy backing a system of state-by-state education indicators. The Council recognized the need for reliable, valid indicators of the condition of education and took the lead in efforts to develop highquality, comparable indicators, such as expansion of the NAEP to state-level reporting. The plan for state indicators approved by the Council has three components: (1) student outcomes, (2) education policies and practices, and (3) state context. The Council received a grant from NSF to develop and report state-level and national indicators of science and mathematics education as a part of the Council's overall indicators plan.

Following the National Science Board's 1983 report outlining the need for better regularly-reported information about the quality of U.S. science and mathematics education, the NSF has led efforts to develop and report educational indicators at the elementary and secondary levels. In addition to the Council's work, a number of studies have oeen supported by NSF that have identified key science and mathematics education indicators and collected and reported new data on these indicators (Shavelson, McDonnell, Oakes, \& Carey, 1987; Murnane \& Raizen, 1988; Weiss, 1987; Oakes, 1990 a, b). NSF initiated a chapter on precollege science and mathematics education in the biennial Science Indicators (1985-1991) and in 1993 will be releasing a new comprehensive report on education indicators. The science and mathematics indicators developed by CCSSO meet three kinds of interests in indicators:

- State and national indicators to track progress toward the National Education Goals;
- Periodic, state-comparable data to assess the effects
of state education policy reforms;
- Measures of the quality of science and mathematics education that are useful to educators and policymakers to plan programs and recommend new initiatives.

National Goals.

The first report of the NEGP (1991) outlined indicators for measuring progress towards the six national goals. The Panel recommended measuring progress in student achievement, particularly higher order thinking and problem solving, rates of student participation in advanced mathematics and science courses, methods of instruction, and teacher preparation in their teaching field.

> "Reaching a new standard of excellence requires clear educational obiectives, strong leadership and firm commitment at all levels. Goals must be set and press tovard those goals assessed...The Federal gou"ernment should finance and maintain a national mechanism for measuring student achievement and participation [in mathematics, science and technology educationl in a manner that allows national, state and local cvaluation and comparison of educational progress."
> - Educating Americans for the 21 st Century. National Science Board Commission on Precollege Education in Mathematics, Science and Technology, 1983.

State Policy Reforms

In the 1980s, states initiated a broad set of policy reforms in responding to A Nation at Risk (National Commission on Excellence in Education, 1983) and other national commission reports,' which cited many problems in our schools, and partic ularly the poor performance of American studer:t in science and mathematics as compared to students ir other industrialized countries. States incriased corrse credit requirements for graduation (particuia, ily in mathematics and science), raised standards for teacher preparation, mandated teacher tests for certification, set higher levels for teacher pay, developed state curriculum guidelines and frameworks, and established new statewide student assessments (National Governors' Association (NGA), 1986; Blank \& Espenshade, 1988; Goertz, 1988; Blank \& Dalkilic, 1992]. The Council's system of science and mathematics indicators provide state-by-state data to track
these policy changes over time and to analyze the relationship of state policies to change in student learning, opportunities to learn for all students, and the supply and quality of science and mathematics teachers.
"At a time of major educational reform, the data on science and mathematics indicators are essential in providing comparisons among the states. The information is also vital to good decision making."

- William Spooner, North Carolina Department of Education, and President, Council of State Science Supervisors, November 1992.

Education Quality

A third interest in state science-mathematics indicators is to assist state policymakers, administrators, and specialists in planning and evaluating programs and developing new initiatives. For example, all state education agencies administer the federally funded Eisenhower Science-Mathematics Program for teacher professional development, and each state needs data on the characteristics of the teaching force. NSF has cooperative agreements with 21 states in support of Statewide Systemic Initiatives (SSI) for reforming science and mathematics education, and comparable state-level data are needed to describe conditions across the states and to track change among and within states.

There are other ways in which the science and

FIGURE 1

PRIORITY STATE INDICATORS OF SCIGURE 1 AND MATHEMATICS EDUCATION
(Approved by CCSSO, November 1987)

PRIORITY SCIENCE-MATHEMATICS INDICATOR	DATA SOURCE
Student Oulcomes	
Student Achievement	NAEP
Student Alitudes/Intentions	NAEP
Instructional Time/Particioation	
Grade; 7-12 Course Enrollment	State Data (CCSSO)
Elementary Minuties Per Week	Schools/Staifing Survey (SASS) (NCES)
Curriculum Content	
Students "Opportunity-10-Learn"	Dala Not Avalable
School Condtions	
Class Size by Subject/Course	SASS (NCES)
No. ol Course Preparations Per Teacher Course Otterings Per School	Staxe Data

Resources and Materials
Teacher Qualify
Courses/Credits in Science/Maithematics
SASS (NCES)
Teaching Assignments by Field/Subjecl Stale Data (CCSSO)
By Age, Gender. Race/Elhnicity
Teaching Assignments by
Cerritication Field/Subject
State Data (CCSSO)

Equity
Gender and Race/Ethnicity
All Sources
mathematics indicators have had practical apphcations. State administrators have used course enrollment data to analyze differences in the level of course-taking in their state as compared to states in their region and states with similar demographic characteristics. Policymakers have been able to compare the proportion of science and mathematics reachers with a degree in their teaching field with recommended and proposed standards for teacher preparation. Teacher educators have identified teacher shortages by science specialization and by gender and race in order to target teacher recruitment and professional development programs.

Policy Issues and Indicators

Considering these interests in indicators, the systern of state and national science-mathematics indicators being reported by the Council are aimed at key policy questions, such as:

1. Is student achievement in science and mathematics improving? Are more students learning challenging subject matter in science and mathematics?
2. How much instruction do students receive in science and mathematics in elementary and secondary school? Do students have equal opportunities for advanced high school study?
3. Do we have a sufficient supply of well-qualified teachers in science and mathematics?
4. How do opportunities and conditions for science and mathematics vary among the states?

In 1991, the Council published the first report providing state-by-state indicators of science and mathematics education for the 1989-90 school year (Blank \& Dalkilic, 1991). The present report on indicators for the 1991-92 school year is the second in a biennial series that will be reporting and analyzing trends in the condition of science and mathematics education. The indicators have been used in other national and state reports, such as the NEGP annual reports (1991, 1992), the NSF biennial indicators on science and mathematics education (National Science Board, 1991), the annual report on education indicators of the Council (CCSSO, 1987-93), and in publications of the National Science Teachers Association (1992) and the American Association of School Administrators (Blank, 1991a). Other reports and papers from the Council have analyzed the state indicators, including Has Science and Mathematics Education Improved Since A Nation at Risk? (Blank \& Engler, 1992), State Policies on Science and Mathematics Education (Blank \& Dalkilic, 1992), and "Developing a System of Education Indicators" (Blank, 1993).

Selection and Development of Science and Mathematics Indicators

The science and mathematics indicators being reported were selected through a process of research and consensus development. The Council's efforts with developing a system of education indicators are based on three basic premises:

- Indicators should reflect the needs of users of education data, such as policymakers and educators.
- Indicators should be selected with consideration and input from the providers of data, such as state data managers, districts, and schools.
- Indicators should be derived from a researchbased model of the education system, including education inputs, processes, and outcomes; and selected indicators should be measured with valid, reliable data.

Figure 1 displays the "priority state indicators of science and mathematics education" that were approved by the Council in 1987 and that continue to form the basis for CCSSO's indicator development and reporting. The first step in selecting the priority indicators was developing a conceptual framework for the state science and mathematics indicators (Blank, 1986). The framework was based on an inpuis-processes-outcomes education model as recommended by Shavelson et al. (1987) and Porter (1991) and as used in the chapter on "Precollege Science and Mathematics Education" in the NSF report on Science and Engineering Indicators (National Science Board, 1991). The framework for state science-mathematics indicators was also shaped by the Council's indicators model (1985) which recommended three kinds of indicators at the state level:
(1) educational outcomes,
(2) state policies and practices, and
(3) state context.

The second step in selecting priority state indicators was compiling a list of desired, or ideal, indicators based on review of the research on indicators and recommendations on the needs for science and mathematics education indicators (NGA, 1986; National Science Board, 1983; Oakes, 1986; Shavelson et al., 1987; Murnane \& Raizen, 1988). The strategy of outlining desired, ideal indicators and then selecting those it be given highest priority for development work was outlined by Murnane and Raizen in report of the National Research Council (1988). A survey of states and analysis of existing national surveys provided the basis for determining data availability on desired indicators and the potential for new data collection for the indicators (CCSSO, 1988a). Based on the conceptual framework, six categories of ideal indicators were specified: student outcomes, instructional time/participation, curriculum content, teacher quality, school conditions, and equity. (Blank \& Selden, 1987)

Third, the Council convened a task force of state
science and mathematics specialists (data users) and data managers (providers), education researchers, and federal education staff to weigh the desired indicators against the quality and feasibility of data. Based on the group's discussion and analysis, a comsensus was produced for the priority list of indicators. The task force recommended 12 priority sci-ence-mathematics indicators across six areas (see Figure 1). The group decided that each area should have at least one priority indicator, but the total number of priority indicators should be limited to reduce the length of reports and to focus resources on a small number of critical indicators that can realistically be developed.:

As the development and reporting of state indicators has proceeded, new research on indicators (Oakes, 1989; Porter, 1991; National Study Panel on Education Indicators, 1991; Clune, White, Sun, \& Patterson, 1991; Koretz, 1992; Stecher, 1992) and reports on science and mathematics education and indicators |American Association for the Advancement of Science (AAAS), 1989; National Council of 'Teachers of Mathematics (NC.TM), 1989; National Science Board, 1991; NEGP, 1992| have been reviewed to ensure that the Council's indicators are consistent with current knowledge and forward looking in science and mathematics education. The Council's priority indicators and data sources for the indicators were reviewed by an advisory panel in July 1991 (Blank, 1991b), following publication of the 1990 report; and small modifications and additions were made for the 1991-92 indicators, such as requesting state data on new teachers in science and mathematics and reporting on variation in indicators within states.

Data Sources

Three sources of data are used to report the sci-ence-mathematics indicators for 1993. The NAFP mathematics assessment is the source for student achievement in mathematics by state (Mullis, et al., 1993). The 1991 Schools and Staffing Survey is the source for state-representative data on teacher preparation and school conditions for science and mathematics (NCES, 1993). Finally, the Council collected data from state departments of education on indicators of course enrollment, teacher assignments, and teacher certification, and new teachers.

CCSSO requested that all states collect data on the science and mathematics indicators as of October 1 , 1991. Then, states were asked to report state aggregate numbers on the indicators to CCSSO using a common reporting form and common categories and

[^1]definitions (CCSSO, 1991). The data were reported on students and teachers in public schools only. Each state's data codes were cross-walked with the Council's data reporting categories. In 1991-92, a total of 47 state education departments reported data on one or more of the requested indicators. In succeeding biennial cycles of data reporting, CCSSO will be working to have complete 50 state participation.

The state and national indicators of ssience and mathematics education are organized and reported according to the framework developed by the Council in cooperation with the states, project advis-
ers, and NSF. The indicators are reported in five categories: Student Outcomes, Instructional Time and Participation, Curriculum Content, Teacher Quality, School Conditions. Also, indicators of educational equity are incorporated in the five categories. For each indicator, new data are reported for the 199192 school year, and indicator trends over time are analyzed.

SCIENCE AND MATHEMATICS INDICATORS: 1993

Student Outcomes, Curriculum Content, Instructional Time and Participation, Teacher Quality, School Conditions

INDICATORS OF STUDENT OUTCOMES

Policy Issues:

- Has student achievement in science and mathematics improved over time and how does achievement compare state to state?
- Are students learning challenging content in science and mathematics?
- Are schools improving the performance of all students?

The 1990 NAEP mathematics assessment provided the first comparable state-by-state indicator of student achievement. The NCES reported the results of the NAEP Trial State Assessment for eighth grade mathematics in June 1991. In January 1993, the national averages from the 1992 NAEP mathematics assessment were reported, and the state-by-state results were released in April 1993. Results from these two NAEP mathematics assessments provide indicators of student outcomes in mathematics. Another source of state-by-state student outcomes is the number of students taking advanced placement examinations in mathematics and science and the percentage receiving a qualified score on the exams.

Mathematics Proficiency on NAEP

Table 1 provides summary statistics for state-by-state and national results from the 1992 NAEP mathematics assessment in grade 8 . The state NAEP results for mathematics showed that 18 states had significant improvenents in NAEP mathematics proficiency from 1990 to 1992, and the average proficiency declined in no statcs. Nationally, 63 percent of grade 8 students scored at or above the Basic achievement level, 25 percent were at or above the Proficient level, and 4 percent were at or above the Advanced level. Thirty-seven percent of students scored below the Basic achievement level.

From 1990 to 1992 , the average NAEP mathematics proficiency improved significantly at grades 4 , 8, and 12. In the 1992 NAEP mathematics assessment, the average proficiency or grade 8 students was 268 on a scale of 0 to 500 , as compared to the 1990 average of 263 . The 1992 average grade 4 proficiency was 218 , as compared to 213 in 1990 . The 1992 grade 12 average was 299 as compared to 294 in 1990. The 1992 grade 8 proficiency varied by state from 283 to 222 , and the grade 4 proficiency varied by state from 231 to 191.

The Council makes two recommendations in using NAEP results as a state-by-state indicator. First, comparing state ranks per se on NAEP should
be avoided. State averages cluster together, and many of the differences are not meaningful. As a result, the state rank by itself provides little information about what mathematics 8 th grade students know and can do. For example, in the 1990 NAEP mathematics assessment Pennsylvania had an average mathematics proficiency of 266 (on a scale from 0 to 500) and there was no statistically significant difference between the Pennsylvania score and the score of 16 other states. The average proficiency score also needs to be interpreted with other information that gives it meaning, such as the achievement levels, which define the mathematics knowledge and skills related to a specific NAEP proficiency score. In the 1992 mathematics assessment, lowa had the highest average state proficiency of 283 at grade 8 , but only 37 percent of Iowa's eighth grade students scored at or above the Proficient achievement level of 294 , which is the level expected of all students in the 8 th grade. Nationally, 25 percent of students were at or above the Proficient level.'

Our second recommendation about using the NAEP results as a state indicator is to examine a state's mathematics proficiency in the content areas of mathematics that are assessed at the eighth grade. Five content areas-Numbers and Operations; Measurement; Geometry; Data Analysis, Statistics, and Probability; and Algebra and Functions-were selected for the 1990 NAEP in mathematics by the NAEP Consensus Planning Project headed by the Council (CCSSO, 1988b), and a sixth area of report-ing-Estimation-was added for the 1992 NAEP. The selection of content areas was strongly influenced by the NCTM Curriculum and Etaluation Standards (1989). By analyzing results for each of these content areas, policymakers and educators can identify strengths and weaknesses in the state's mathematics curriculum and instruction as indicated by students' performance in those areas. Appendix Table A-1 gives the average proficiency at grade 8 for each content area in 1992. In most states, student proficiency in Numbers and Operatiors was from 4 to 8 points higher than performance in $t \mid$ other areas, but some states had differences of 10 to 1.5 points between Numbers and Operations and the

[^2]TABLE 1 AVERAGE GRADE 8 MATHEMATICS PROFICIENCY AND ACHIEVEMENT LEVELS ON 1992 NAEP

PU8LIC SCHOOLS	Averaga Proficiency	\% at or Above Basic Leve!	\% al or Above Proficient Level	\% at or Above Advanced Level
STATES				
Alabama	251	44%	12%	1\%
Arizona	265 >	$61>$	19	2
Arkansas	255	50	13	1
Calitornia	260	55	20	3
Colorado	272 >	$69>$	$26>$	2
Connecticut	273 >	69	30 ?	4
Delaware	262	57	18	3
Dist. of Coiumbia	$234>$	26 >	6	1
Florida	259	55	18	2
Georgia	259	53	16	1
Hawaii	257 >	$51>$	16	2
Idaho	274 >	73	27	3
Indiana	269	66	24	3
lowa	283 >	81 >	37 >	5
Kentucky	$261>$	$57>$	17	2
Louisiana	249	42	10	1
Maine	278	77	31	4
Maryland	264	59	24	4
Massanhusetts	272	68	28	3
Michiçan	267	63	23	3
Minnesota	$282>$	79 ;	37 >	6 >
Mississippi	246	38	8	0
Missouri	270	68	24	3
Nebraska	277	75	32	4
New Hampshire	278 >	77 >	30 >	3
New Jersey	271	67	28	4
New Mexico	259 >	54	14	1
New York	266	62	24	4
North Carolina	258 >	53 >	$15>$	1
North Dakota	283	82	36	4
Ohio	267	64	22	2
Oklahoma	267 >	65	21	2
Pennsylvania	271	67	26	3
Rhode Island	265 >	$62>$	20	2
South Carolina	260	53	18	2
Tennessee	258	53	15	1
Texas	264 >	58 >	21 >	4
Utah	274	72	27	3
Virginia	267	62	23	3
West Virginia	258	53	13	1
Wisconsin	277	76	32	4
Wyoming	274 >	73	26	2
TERRITORIES				
Guam	$234>$	30	7	1
Virgin Islands	$222>$	13	1	0
NATION	$268>$	$63>$	$25>$	4
Northeast	267	59	25	5
Southeast	258	53	16	1
Cantral	273	70	28	3
West	267	62	24	4

[^3]areas of Measurement, Geometry, and Algebra and Functions. Nine states had significant improvement in Numbers and Operations from 1990 to 1992, arid 14 states improved significantly in the area of Measurement. Ten states had significant improvement in the area of Algebra and Functions, but only four states improved student proficiency in Geometry.

With further analysis, states can analyze performance differences for specific groups of schools and students within a state, such as rural vs. urban, boys vs. girls, and students in low ability groupings vs. students not ability grouped.

One of the Council's priority indicators on science and mathematics education includes assessing the degree of equity that has been achieved in educational opportunity, conditions, and outcomes. Equity can be analyzed by disaggregating state a verages according to differences in students' race/ethnicity and gender. Toward this goal, Table 2 shows the NAEP 1992 mathematics results by state and race/ethnic groups. The table shows the percentage of students above the Basic achievement level for the three largest race/ethnic groups in each state, and the difference between the percentage for white students and the percentage of the largest minority group in each state. Each state can he compared with the national difference of 47 percent, that is, 73 percent of white students at or above basic vs. 26 percent of black students. Over time, the percentage differences for each can be used as a comparative measure of states' effectiveness in increasing equity in mathematics achievement. The data show that all states, except Hawaii, have a significant disparity between the average mathematics proficiency and the proficiency of the largest minority group. Between 1990 and 1992, only 12 states made any progress in decreasing the difference score, and the national average on difference between whites and black proficiency increased by seven percent. The only states to close the gap more than two percent were Colorado, Minnesota, North Dakota, West Virginia, and Wisconsin.

From 1990 to 1992, there was no national increase in proficiency for any minority groups. Average mathematics proficiency at grade 8 improved significantly among black students in two states and among Hispanic students in four states. This lack of change indicates slowing of the substantial improvements in NAEP proficiency during the 1980s. For example, from 1982 to 1990, average mathematics proficiency of black students increased 17 points at age 17 (grade 12) and 9 points at age 13 (grade 8) (NCES, 1991).

No gender differences were found in average mathematics proficiency at the fourth and eighth grade levels (Mullis, et al., 1993). The 1992 national NAEP results in mathematics show slightly more males than females scoring at the Advanced level at
grade 12 , and the average proficiency for males is higher than females at the 12 th grade.

The 1990 NAEP Science Assessment showed a similar pattern in gender differences at the national level (state data not available). At grade 4 there was no significant difference in boys' and girls' science scores. At grade 8, 21 percent of boys scored above the 300 level (similar to Proficient) as compared to 15 percent of girls, with no differences at the lower levels. At grade 12 , twice as many boys (13 vs. 6 percent) scored above the advanced 350 level, while 49 percent of boys and 40 percent of girls scored above 300 (Jones, Mullis, Raizen, Weiss, \& Weston, 1992). The recent NAEP results for mathematics and science show that gender differences in student achievement appear at the advanced levels of performance as students leave eighth grade and proceed through high school.

Advanced Placement Resulis

A second indicator of student outcomes for states and the nation is the proportion of students taking advanced placement examinations and the proportion who receive a passing (qualified) score (College Board, 1992). The Council is reporting AP examination state results for the first time and will report trends in future reports. Table 3 provides state-bystate data on the numbers of students taking $A P$ exams in calculus and biology, and the percentage of exam-takers who receive a qualified score. (The numbers of students taking AP exams in chemistry, physics, and computer science are reported in Appendix Table A-2). The data show a national total of over 89,000 students took the calculus AP exam in 1992, or about 4 percent of 12 th grade students. ${ }^{4}$ The percentage of students varied by state from under .5 percent to 8 percent (New York, District of Culumbia). In the nation, 68 percent of students received a qualified score (3,4 , or 5) for calculus AP. The state percentages for qualified scores varied from 37 percent (Indiana) to 80 percent (Utah). A total of 4.4 percent of 12 th grade students took an AP examination in biology, chemistry, or physics. In biology, over 40,000 students took the AP exam, or about 2 percent of 12 th grade students. State percentages of students taking the biology AP exam varied from under 0.5 percent (several states) to .5 percent (Utah). The state percent receiving a qualified score varied from 27 percent (indiana) to 77 percent (New Hampshire).

The calculus and biology numbers are disaggregated by student gender and race/ethnicity to assist policymakers in examining progress in advanced science and mathematics of students for ali students. Nationally, 26 percent of students taking the calculus

TABLE 2
COMPARISON OF MATHEMATICS PROFICIENCY BY RACE/ETHNIC GROUP PERCENTAGE OF BTH GRADE STUDENTS AT OR ABOVE BASIC ACHIEVEMENT LEVEL ON 1992 NAEP

	\% While at or Above Basic Level	\% Black at or Above Basic Level		\% Hispanic at or Above Basic Leval		\% Diftarence Scors: White Minus Largest Minorlty
Alabama	59%	19%		15\%	(4)	40%
Arizona	74	42	(4)	40	(28)	34
Arkansas	61	18	(22)	23	(4)	43
Caitornia	73	26	(7)	34	(36)	39
Colorado	77	33	(4)	48	(18)	29
Connecticut	81	32	(12)	32	(12)	49
Delaware	69	31	(25)	33	(6)	38
Dist of Columbia	-	26	(85)	22	(10)	-
Florida	70	27	(23)	40	(18)	43
Georgia	69	29	(35)	27	(4)	40
Hawaii	62	53	(66) *	34	(11)	11
Idaho	76	51	(3) *	46	(8)	30
Indiana	70	34	(8)	46	(4)	36
Howa	83	-	(2)	53	(4)	30
Kentucky	61	30	(9)	26	(3)	31
Louisiana	59	22	(39)	21	(5)	37
Maine	79	60	(3) *	-	(2)	19
Maryland	74	30	(29)	33	(6)	44
Massachusetts	74	35	(5)	30	(8)	44
Michigan	75	22	(18)	44	(5)	53
Minnesota	81	--	(2)	48	(3)	33
Mississippi	59	19	(44)	12	(6)	40
Missumi	75	30	(12)	38	(3)	45
Nebraska	81	25	(5)	47	(6)	34
New Hampshire,	78	-	(1)	56	(3)	22
New Jersey	82	32	(17)	41	(14)	50
New Mexico	72	41	(4) ${ }^{\text {c }}$	40	(49)	32
New York	78	25	(17)	38	(14)	53
North Carolina	63	29	(27)	28	(3)	34
North Dakota	84	57	(3) *	-	(3)	27
Ohio	72	24	(14)	38	(4)	48
Oklahoma	72	28	(8)	45	(6)	44
Pennsylvania	73	28	(11)	38	(3)	45
Rhode Island	69	32	(6)	22	(8)	47
South Carolina	70	30	(35)	21	(6)	40
Tennessee	62	21	(21)	23	(3)	41
Texas	76	33	(12)	40	(36)	36
Utah	75	-	(-)	47	(7)	28
Virginia	71	35	(22)	50	(5)	36
West Virginia	55	31	(4)	19	(3)	24
Wisconsin	81	38	(7)	43	(4)	43
Wyoming	77	39	(4) *	53	(9)	24
NATION	73 \%	26	(16)	37	(10)	47 \%

[^4]TABLE 3-A
STUDENTS TAKING ADVANCED PLACEMENT EXAMINATION IN CAiCULUS BY GENDER AND RACE/ETHNICITY (1992)

AP Calculus					
state	Total Taking Exam	$\begin{gathered} \% \text { nf } \\ \text { Grade } 12 \end{gathered}$	Quallied Score	\% Minorlly Students Taking	\% Female Students Taking
Alabama	924	2\%	55\%	19\%	48\%
Alaska	208	3	58	16	48
Arizona	1,066	3	68	22	44
Arkansas	282	1	59	15	42
California	14,034	5	71	53	43
Colorado	1.282	4	70	22	41
Connecticut	1.535	5	72	16	39
Delaware	378	6	78	18	44
Dist of Coiumbia	267	8	67	29	44
Florida	4.898	5	64	29	43
Georgia	1.952	3	70	20	42
Hawaii	585	6	81	76	49
Idaho	245	2	76	5	37
Illinois	4,798	5	73	27	44
Indiana	2.434	4	37	11	42
Iowa	355	1	81	7	37
Kansas	307	1	77	15	34
Kentucky	858	2	49	6	47
Louisiana	466	1	68	24	45
Maine	372	3	53	5	45
Maryland	2.413	6	70	25	44
Massachusetts	3,216	6	73	18	41
Michigan	2,945	3	71	16	40
Minnesota	891	2	76	9	40
Mississippi	318	1	63	13	48
Missouri	679	1	76	16	41
Montana	56	1	45	7	45
Nebraska	199	1	70	7	44
Nevada	257	2	66	24	38
New Hampshire	568	5	75	14	42
New Jersey	4,230	6	72	27	41
New Mexico	556	3	60	25	42
New York	10.908	8	66	27	46
North Carolina	2,315	4	66	14	46
North Dakota	66	1	79	9	32
Ohio	3,076	3	70	15	41
Oklahoma	542	2	68	18	44
Oregon 0	596	2	73	13	39
Pennsylvania	3.610	3	67	15	42
Rhode Island	302	4	70	18	43
South Carolina	2.183	6	59	19	51
South Dakota	36	0	61	3	42
Tennessee	1,299	3	70	18	42
Texas	3.472	2	74	31	42
Uiah	1.787	6	80	6	39
Vermont	230	4	55	7	42
Virginia	3.399	6	67	20	47
Washington	1,267	2	70	20	38
West Virginia	368	2	47	11	41
Wisconsin	1.140	2	74	7	37
Wyoming	144	2	69	4	35
NATION	89,559	4\%	68\%	26\%	43\%

[^5]\circ

AP exam were minority students, and 43 percent were female. States with more than 30 percent minority participation were California, Colorado, and Texas. In biology, 25 percent of students taking the AP exam were minority students, and 52 percent were female. States with over 30 percent minority participation were California, Maryland, District of Columbia, Illinois, and Texas. Appendix Table A-2 provides the rates for calculus and biology disaggregated by five race/ethnic groups, and the number of students taking AP exams in chemistry, physics, and computer science. Minority participation is highest among Asian students (18 percent calculus, 17 percent biology). Four percent of black and Hispanic students took AP exams in calculus and biology.

INDICATORS OF CURRICULUM CONTENT

Policy Issues:

- How docs the content students are taught in mathematics and science vary by state and by school and classroom?
-What proportion of students at a given grade level are taught with challenging curriculum content?

The publication of national curriculum standards in mathematics (NCTM, 1989) and the current effort to develop national science standards by the National Acadeny of Sciences/National Research Corroil are leading examples of a major focus of current on reform on the content of curriculum. States are developing and revising their curriculum frameworks to more clearly define the content knowledge and student skills that schools should aim for in their curricula (Blank \& Dalkilic, 1992). With the movement toward a common set of curriculum standards, there is increased recognition of the need for data to assess the nature of instruction that students receive in the classroom.

Opportunity to Learn

A promising approach to measuring the implemented curriculum is with a teacher survey of students "opportunity to learn." International studies of mathematics and science have made effective use of "opportunity to learn" surveys to determine the differences in curriculum content and material as important explanations of variation in student achievement scores (McKnight, et al., 1987; Schmidt, 1992). Survey questions on opportunity to learn are generally completed by classroom teachers based on what has been taught in a specific grade and subject or course. A few states have developed teacher surveys of opportunity to learn in conjunction with their state assessment programs. State-by-state data are not currently available at the level of detail on curriculum content and instructional methods that are collected in the international studies.

The Council is currently working with U.S. experts designing the Third International Mathermatics and Science Study (TIMSS) to determine if the instruments for collecting data on opportunity to learn at grades 4,8 , and 12 can be adapted to regular, periodic surveys to produce state-level indicators (CCSSO, 1992). The TIMSS design will collect data on curriculum coverage by topic, time spent on the topic, teaching approach, and expected itudent knowledge or skill.

Teacher Emphasis on Areas of Mathematics

NAEP teacher questionnaires include items on the broad curriculum areas that teachers emphasize in teaching a subject. These data do not provide adequate indicators of curriculum content or opportunity to learn. However, the data do offer some idea of

TABLE 3-8
students taking advanced placement examination in biology bY Gender and race/EThNICITY (1992)

State	AP 8lology				
	Total Taking Exam	$\begin{gathered} \% \text { of } \\ \text { Grade } 12 \end{gathered}$	$\begin{gathered} \% \\ \text { Qualifled } \\ \text { Score } \end{gathered}$	\% Minorlty Students Taking	\% Female Students raking
Alabama	416	1\%	51\%	18\%	56\%
aska	54	1	44	7	57
Arizona	244	1	54	19	52
Arkansas	118	0	75	14	49
Caiifornia	6,574	3	69	47	48
Colcrado	627	2	63	15	55
Connecticut	716	3	71	15	52
Delaware	143	2	79	12	42
Dist. of Columbia	233	7	56	37	48
Florida	2.368	2	49	29	52
Georgia	794	1	65	26	55
Hawaii	228	2	74	71	58
Idaho	143	1	69	5	49
Illinois	1,862	2	68	29	56
Indiana	1.004	2	27	11	57
lowa	149	0	69	7	40
Kansas	41	0	93	5	39
Kentucky	501	1	46	2	54
Louisiana	167	0	66	29	51
Maire	115	1	70	3	62
Maryland	1.034	3	65	33	60
Massachusetts	1,390	3	71	15	53
Michigan	1,171	1	66	18	53
Mirnesota	243	0	70	8	45
Mississippi	164	1	47	11	51
Missouri	351	1	67	17	51
Montana	69	1	74	3	45
Nebraska	94	1	64	7	41
Nevada	93	1	41	16	47
New Hampshire	164	2	77	10	62
New Jersey	1,992	3	68	26	53
New Mexico	168	1	47	26	52
New York	6,206	4	70	23	53
North Carolina	1,073	2	57	13	58
North Dakola	28	0	64	0	39
Ohio	968	1	70	20	51
Okiahoma	139	0	60	20	53
Oregon	287	1	72	13	44
Penasylvania	1,350	1	58	11	53
Rhode Island	223	3	70	8	43
South Carolina	978	3	61	16	57
South Dakota	25	0	64	12	56
Tennessee	648	1	67	21	53
Texas	1.360	1	66	33	52
Utah	1,331	5	70	7	44
Vermont	147	3	70	5	54
Virginia	1,381	2	64	21	57
Washington	340	1	65	15	49
West Virginia	210	1	41	9	62
Wisconsin	316	1	61	7	44
Wyoming	18	0	61	6	44
NATION	40,458	2\%	64\%	25\%	52\%

[^6]the variation across states in differences in approach to the curriculum at a given grade level. In the 1990 NAEP mathematics assessment, teachers were asked to indicate the degree to which they gave heary, moderate, or little or no emphasis in their mathematics instruction to: Numbers and Operations, Measurement, Data Analysis and Statistics, Geometry, and Algebra and Functions. The initial report of the results showed that at the national level - \quad a strong association between the topics teachasize and student proficiency in those areas 1. : surs et al., 1991). Students tend to do better in one of those five areas when teachers emphasize it, whether it is Numbers and Operations or Algebra and Functions. In other words, students achieve more in the areas where more teaching effort is placed.

The NAEP data were analyzed by state to determine if there are patterns among the states in teacher emphasis on areas of the mathematics curriculum and to determine if these differences by state are related to differences in student mathematics proficiency.

First, several of the curriculum areas were found to be interrelated. The state-level analysis showed a strong correlation ($r=.93$) between the percentage of students receiving heavy emphases in Numbers/Operations and in Measurement. There is also a high correlation $(r=.81)$ between the percentage of students receiving heavy emphases in Geometry' and in Algebra/Functions. States providing large percentages of their students with heavy emphases in both Numbers/Operations and Measurement may be offering rather traditional programs of study, while those giving heavy emphasis to the Geometry and Algebra/Functions areas at the eighth grade level may be moving toward a richer, more ambitious program of study, similar to that called for by the NC.TM Standards.

Results of the state-by-state analysis of the 1990 NAEP data showed that the relative emphasis that teachers in a state give to different areas of the eighth grade mathematics curriculum is strongly related to the level and type of mathematics proficiency of students in the state. The percentage of students receiving heary teacher emphasis in Numbers/Operations and Measurement varied from 22 percent (Colorado) to 45 percent (Georgia and Texas). Teachers in eight states gave the largest proportions of students heavy emphasis in Numbers/Operations and Measurement: Georgia, Texas, Virgin Islands, Alabama, Guam, Arkansas, Kentucky, and Florida, in decreasing

[^7]order. The eight states where teachers gave the lowest proportion of their students a heavy emphasis in these areas were: Colorado, Oregon, Wisconsin, Minnesota, Wyoming, Montana, New Hampshire, and Nebraska.

Appendix Table A-3 in Appendix A shows the proportion of students in a state receiving heavy emphasis in Numbers/Operations and Mcasurement by average mathematics proficiency score (see Table A- 5 for state percentages by area). The state percentages for emphasis on Numbers/Operations and Measurement are expressed by quintile averages. States with higher proficiency tend to have fewer students receiving heavy emphasis on Numbers/Operations and Measurement. The states in the top quintile of mathematics proficiency had an average of 27 percent of students receiving heavy emphasis on Numbers/Operations and Mcasurement, while the states in the bottom quintile of mathematics proficiency had an average of 37 percent of students recciving emphasis in these areas.'

The percentage of students receiving heavy teacher emphasis in Geometry and Algebra/Functions varied from 23 percent (Hawaii) to 46 percent (New Jersey). Teachers in eight states gave the most emphasis on Geometry and Algebra/Functions: New Jersey, Texas, New York, Montana, Illinois, North Dakota, New Mexico, and Georgia. (Some states' data show' high emphasis in both "types" of curriculum.) Appendix Table A-4 in Appendix A shows the proportion of students receiving heavy emphasis on Geometry and Algebra/Functions by average mathematics proficiency score. States with higher proficiency tend to have more students receiving heavy emphasis on Geometry and Algebra/Functions. The states in the top quintile of mathematics proficiency had an average of 37 percent of students receiving curriculum emphasis on Geometry and Algebra/Functions, whereas the states in the bottom quintile of mathematics proficiency had an average of 31 percent of students receiving emphasis in these areas.

INDICATORS OF INSTRUCTIONAL TIME AND FARTICIPATION

The amount of instruction students receive in science and mathematics has consistently been demonstrated to be a strong predictor of student learning (Husen, 1967; Walberg, 1984; Rock, Braun, \& Rosenbaum, 1985; Jones, Davenport, Bryson, Bekhuis, \& Zwick, 1986; Scbring, 1987: Dossey, Mullis, Lindquist, \& Chambers, 1988; Jones, Mullis, Raizen, Weiss, \& Weston, 1992). Research has also shown that instructional time, course enrollments, and the science and mathematics curriculum students are taught vary widely according to differences in school and classroom demographics (Goodlad, 1984; Weiss, 1987; McKnight et al, 1987; Oakes, 1989; Mullis, et al., 1991 ; Horn \& Hafner, 1992). Thus, indicators of instructional time and student enrollments in courses are important for tracking the performance of our schools.

In A Nation at Risk, the National Commission on Excellence in Fducation (1983) highlighted the poor performance of American students on international science and mathematics assessments and drew a relationship to the relatively low amount of science and mathematics received by many students in our schools. The Commission recommended that three high school mathematics courses and three science courses be required of all students for graduation. The Commission also stated that science should be a "new basic" in elementary cducation.

Many state reforms were aimed at setting higher standards for mathematics and science instruction in schools. From 1980 to 1989, 44 states increased mathematics course requirements, and 43 states increased science requirements. Additionally, 12 states established advanced or honors diplomas that require additional, higher level courses in science and mathematics (Blank \& Dalkilic, 1992). (See Appendix Table A-9 for current state requirements.)

Since the initial wave of higher state graduation requirements, many states have also developed or revised state curriculum frameworks or guides in science and mathematics. The state frameworks are typically aimed at raising standards for content and instruction at clementary and sccondary levels. Currently, 41 states have a mathematics curriculum framework, 30 states have a science framework. Four states are developing mathematics frameworks and 1.5 states are developing science frameworks (Blank \& Dalkilic, 1992).

ELEMENTARY CLASS TIME ON SCIENCE AND MATHEMATICS

Policy Issues

- Does the average elementary student have adequate opportunity to learn science and mathematics, including time for instruction, demanding curriculum content, appropriate teaching methods, and adequate
materials and equipment?
- How do states differ in class time for mathematics and science (understanding that time is only an initial, basic indicator)?

The amount of class time spent on science and mathematics in elementary schools was selected as a priority state indicator. Many states have an interest in this indicator because of the state role in defining curriculum frameworks and goals. Reported time spent in instruction provides only basic information about elementary science and mathematics. Fducators, policymakers, and researchers would like state-level information on curriculum content and teaching practices. However, at this time, differences in time spent on science and mathematics may be useful as an initial indicator at the elementary level.

State-by-state data on elementary class time are available from the 1991 Schools and Staffing Survey (SASS), and the results are in Figure 2. The Survey was conducted with a mational- and state-representative sample of teachers. Flementary teachers were asked how much time they spent in the previous full week on four core academic subjects.

The SASS results show the average grade $1-3$ chass spends 4.9 hours per week on mathematics and 2.6 hours on science. Comparing 1988 SASS data to 1991, the average time on science increased by 20 minutes per week, while average math time did not change. Mathematics class time in grade $1-3$ varied by state from an average of 4.4 hours per week (5.3 minutes per day) to 5.6 hours per week. Science class time varied by state from an average of 2 hours per week (24 minutes per day) to 4 hours per week.

The average grade $4-6$ class spends 4.8 hours per week on mathematics and 3.1 hours on science, according to elementary teachers. From 1988 to 1991, the average time on grade 4-6 science increased by 10 minutes per week, while average math time per week did not change. Class time on grade 4-6 mathematics varied by state from 3.8 hours per week (45 minutes per day) to 5.5 hours per week. Science class time varied by state from 2.3 hours per week (28 minutes per day) to 4.3 hours per week. (See Appendix Table A-6 for data on individual states.)

As part of the analysis of SASS time, we compared the average time for mathematics and science in classes with primarily low achieving students (based on teacher reports) with the average time in classes not differentiated by achievement levels. No significant differences in time for mathematics or science werc found between the two types of classes at the state or national levels.

ELEMENTARY CLASS TIME ON MATHEMATICS AND SCIENCE

Note Class in'e - Slate average of leacher reporled hours spent leaching subtect tast neek (setf-contaned etementary classes) Slandard errors for nationat average are 05 math. O5 science Slate slandard errors vary for math from 14 (Alaska) io 61 (Illinois). and !or scrence from 10 (Cabiforma) 1061 (Soulh Carolina!
Source NCES. Schools and Slalling Survey. Public School Teachers. Spring 1991
Council al Chiel Slate School Ollicers. State Etucation Assessmeni Center. Washington. DC. 1993

SCIENCE AND MATHEMATICS COURSE ENROLLMENTS

Policy Issues:

- What proportion of students take academically demanding courses in mathematics and science?
- What are trends in mathematics and science course taking for students reported by gender and race/ethnicity?

Enrollments in Grades 7 and 8

States reported course enrollment data for science and mathematics in grades 7 and 8 . The complete data by state are shown in Appendix Tables A-7 and A-8. These data are useful to educators in two ways. First, the enrollment rates for different mathematics and science courses shows the distribution of courses in the middle grades curriculum. Secondly, the course level of students in mathematics is relared to their level of achievement in mathematics and progress in high school mathematics. The NAEP 1990 mathematics assessment found that students taking algebra in grade 8 scored an average of 296 , while the average for students in regular eighth grade mathematics was 251 (Mullis, et al., 1991). In analyzing dara from the L.ongitudinal Study of American Youth, Miller (1993) tound that student performance in eighth grade mathematics was a strong predictor of student attainment in high school mathematics for students at all sociocconomic status (SES) levels.

PEFCENT OF STUDENTS IN GRADES 7-8 TAKING MATHEMATICS AND SCIENCE COURSES (1991-92)

Mathematics	Orade 7
Remedial	5
Regular	77
Accelerated/Enriched	13
Algebra 1	-
Science	Grades 7.8
General	28
Lite	25
Earth	17
Physical	10
Integrated	7

The state data show that 23 percent of grade 8 students were taking algebra or accelerated-/enriched mathematics in 1992. In grade 7, 13 percent were taking an accelerated mathematics course. These results imply that about one fourth of grade 8 students are receiving instruction in algebra and more advanced topics by grade 8 . Results from the National Educational L.ongitudinal Study confirm that curriculum content is differentiated by course level at grade 8 (Horn \& Hafner, 1992). The NCTM Curriculum and Evaluation Standards (1989) recom-
mend that all students be taught algebra concepts beginning before grade 8 , and that other areas of mathermatics, including geometry and statistics, as well as algebra should be taught in grade 8.

In science, 17 percent were taking earth science, 2.5 percent life science, 10 percent physical science, and 28 percent general science. In 1992, the Council began collecting data on "integrated science," such as the science curriculum reforms being developed through the Scope, Sequence, and Coordination (SS\&C) projects. In the 36 reporting states, a sum of 7 percent of students were reported taking integrated science. Twelve states reported students enrolled in integrated science.

High School Mathematics

States collected and reported data on all high school mathematices courses as of October 1991. Working with state mathenatics supervisors, the Council developed a course taxonomy which categorizes high school mathematics courses under categories of Review Mathematics (e.g., general mathematics); Informal Mathemarics (e.g., prealgebra); and Formal High School Mathematics (e.g., algebra, geometry, trigonometry). In each of the three categories, courses are placed in hierarchial levels from 1 to 5. This course taxonomy provides a basis for comparison of mathematics enrollments across states. The taxonomy incorporates both the traditional high school mathematics course sequence (algebra, geometry, algebra 2 , etc.) and the movement toward courses with integrated mathematical topics recommended by the NC.TM Standards (see Appendix D).

Mathematics course enrollments were aggregated to) four levels using the taxonomy in order to give an overall snapshot of where students are in each state in the high school curriculum. Table 4 shows the total state percentage of students taking mathematics as of October 1991 and the percentages enrolled at four levels: (1) Review Mathomatics (general, applied mathematics); (2) Informal Mathematics (prealge(ra); (3) Formal Mathematics Level 1 (algebra 1, integrated mathematics 1); and (4) Formal Mathematics Levels $2-5$ (geometry, algebra 2, integrated mathematics 2-3, trigonometry, calculus).

COURSE ENROLLMENTS IN HIGH SCHOOL MATHEMATICS BY LEVEL

(Percent of Grade 9-12 Students in October 1991)

Review Mathematics (general, consumer)	16%
Informal Mathematics (preatgebra)	11
Formal Mathematics 1 (algebra 1, integrated mathematics 1)	22
Formal mathematics 2-5 (geometry, algebra 2, trig.. calculus)	36
Total	87 \%

TABLE 4
COURSE ENROLLMENTS IN HIGH SCHOOL MATHEMATICS BY LEVEL AS A PERCENT OF STUDENTS IN GRADES 9-12 (October 1991)

STATE	$\begin{gathered} \text { Review } \\ \text { Math } \\ \text { (Genersl, Applled) } \end{gathered}$	$\begin{gathered} \text { Intormal } \\ \text { Math } \\ \text { (Prealgebra) } \end{gathered}$	Formal Math 1 (Algebra $1 /$ Integrated Math 1)	$\begin{aligned} & \text { Formal Math 2-5 } \\ & \text { (Geom.-Calc.) } \end{aligned}$	Total Math	$\begin{aligned} & \% \text { Change } \\ & \text { Formal Math } 2-5 \\ & 1990 \text { to } 92 \end{aligned}$
Alabama	21%	4%	20%	31%	76%	3%
Alaska	-	-	---	-	-	-
Arizona	-	\cdots	\cdots	-	-	--
Arkansas	26	8	24	36	94	5
Caliornia	17	7	21	29	77	0
Colorado	9	11	18	36	74	-
Connecticut	14	20	17	42	94	4
Delaware	15	13	14	28	70	-5
Dist. of Columbia	5	19	22	32	78	2
Florida	29	13	19	30	91	1
Georgia	\cdots	\cdots	-	-	-	-
Hawaii	37	16	14	22	89	1
Idaho	8	-	16	40	72	2
Illinois	-	-	-	-	-	-
Indiana	14	8	21	36	78	3
lowa	19	6	25	46	96	3
Kansas	8	16	23	41	90	9
Kentucky	14	14	21	39	88	4
Louisiana	-	--	--	---	-	-
Maine	-	-	21	50	--	--
Miaryland	-	-	-	--	--	-
Massachuseils	\cdots	-	---	-	---	-
Michigan	-	-	-	-	\cdots	--
Minnesola	10	-	23	45	77	4
Mississippi	16	8	24	38	87	0
Missouri	15	7	24	37	85	i
Montana	8	11	21	44	84	3
Neviaska	17	-	24	39	87	3
Nevala	17	15	18	29	78	3
New Hampsiive	-	-	-	-	-
New Jersey	\cdots	\cdots	-	\cdots	\cdots	-
New Mexico	18	13	26	33	91	3
New York	13	12	21	34	84	0
Nuerth Carolina	17	11	19	40	88	3
North Dakota	6	5	27	52	91	8
Ohio	19	8	20	38	84	2
Oklahoma	8	11	24	35	81	1
Oregon	11	18	17	32	79	-
Pennsylvania	16	15	24	46	99	0
Puerto Rico	41	-	27	19	87	-
Rhode Island	-	-	\cdots	-	---	-
South Carolina	33	10	18	36	98	2
South Dakota	-	---	-	-	--	-
Tennessee	11	10	22	35	79	7
Texas	9	22	25	38	94	3
Ulah	8	15	20	45	88	-
Vermont	11	11	17	37	78	--
Virginia	14	15	16	42	88	2
Washington	-	-	-	-	-	-
West Virginia	29	5	18	34	89	4
Wisconsin	15	-	26	47	98	18
Wyoming	9	3	21	41	76	16
SUM (38 states)	16%	11 \%	22 \%	36%	87 \%	+ 3 \%

[^8]Several observations can be made about the totals for mathematics in 1991-92 and the two-year trends since 1989-90. Total enrollment in mathematics has increased 3 percentage points, with almost 9 of 10 high school students taking a mathematics course in fall 1991. State totals vary from 72 (Idaho) to 98 percent (South Carolina, Wisconsin). Many states and school districts have placed strong emphasis on encouraging more students to take algebra, geometry, and more advanced courses. The overall increase in mathematics over two years is mostly explained by a 2 -percent increase in formal mathematics $2-5$ (geometry through calculus). To examine state differences, the percentage of change in upper-level mathematics enrollments is shown by state in Table 4.

The percentage of high school students taking algebra 1 or integrated mathematics 1 as of Fall 1991 shows only a 1 percent increased as compared to Fall 1989. However, this percentage does not include approximately 13 percent of grade 8 students takirig algebra. It also understates the overall amount of instruction in algebra in high school because many states and districts have integrated algebra and geometry concepts in high school vocational and applied mathematics courses, which are classified by the CCSSO taxonomy under "review mathematics." However, using the course titles data as reported by states, over one-fourth of all high school mathematics credits were earned in 1992 in a course prior to algebra 1 in the mathematics curriculum (sum of general and applied mathematics, 16 percent, and prealgebra, 11 percent). The percentage of students in mathematics below algebra 1 did not change from 1990 to 1992.

Table 5 reports the estimated percentage of puhlic high school students that take selected high school mathematics courses by the time they graduate.

PERCENT OF STUDENTS TAKING SELECTED MATHEMATICS COURSES BY GRADUATION (1991-92)

Algebra 1 or Integrated mathematics 1	91%
Geometry or integrated mathematics 2	61
Algebra 2 or Integrated mathematics 3	55
Trigonometry/Pre-Calculus	29
Calculus	11

Research on student achievement in science and mathematics shows that successful completion of algebra 1 and geometry, or integrated mathematics, differentiate students who have higher achievement in high school and college (Jones, et al., 1986; Sebring, 1987), and particularly for minority students (Pelavin \& Kane, 1990). Enrollment in algebra 2, or integrated mathematics 3 , is an indicator of the proportion of students that take a third course in high school mathematics, as recommended by the National Commission on Excellence in Education

TABLE 5
percentage of high school students taking selected MATHEMATICS COURSES BY GRADUATION (1991-92)

state'	Algebra 1/ Integrated Math 1	Geomatry/ Integrated Math 2	Algebra $2 /$ Integrated Math 3	Trigonometry/ Precalculus	Calculus
Alabama	83\%	56 \%	50%	19 \%	7%
Alaska	-	-	-	-	-
Arizona	-	-	-	-	-
Arkansas	95 +	60	55	27	6
California	89	47	42	21	9
Colorado	80	59	48	32	9
Connecticut	81	63	59	38	14
Delaware	67	37	42	28	11
Dist. of Columbia	95 +	66	41	17	6
Florida	78	53	46	23	7
Georgia	-	-	-	-	-
Hawaii	58	36	31	19	4
Idaho	74	63	66	24	13
Illinois	-	-	-	-	
Indiana	85	58	53	30	10
lowa	$95+$	76	67	32	12
Kansas	95 +	67	62	32	11
Kentucky	89	67	61	30	7
Lousiana	-	-	-	-	-
Maine	91	88	73	51	-
Maryland	-	-	-	-	-
Massachusetts	-	-	-	-	-
Michigan	-	-	-	-	--
Minnesota	$95+$	71	62	34	13
Mississippi	95 +	64	64	29	4
Missouri	95 +	64	63	16	11
Montana	90	78	58	36	6
Nebraska	$95+$	67	58	22	14
Nevada	80	51	43	19	5
New Hampshire	-	-	-	-	-
New Jersey	-	-	-	-	-
New Mexico	$95+$	56	51	23	8
New York	83	56	45	28	13
North Carolina	88	67	54	40	8
North Dakota	$95+$	81	76	49	6
Ohio	86	62	50	35	10
Oklahoma	95 +	53	63	23	6
Orngon	80	51	46	23	10
Pernsylvania	88	60	60	50	19
Puerto Rico	95 +	65	-	9	-
Rhode Island	-	-	-	-	-
South Carolina	76	58	54	35	9
South Dakota	-	-	-	-	-
Tennessee	81	58	57	29	5
Texas	87	65	67	26	7
Utah	95 +	71	66	34	15
Vermont	70	57	53	30	11
Virginia	90	65	58	37	14
Washington	-	-	-	-	-
West Virginia	79	55	49	27	7
Wisconsin	$95+$	81	58	34	21
Wyoming	$95+$	63	59	28	16
NATION	91 \%	61 \%	55 \%	29 \%	11 \%

Note Each state percent is a statistical esumat of course taxing or pubic hing schoor studeris by ite ime they ord uate based on the totai course enrcllment in grades $9-12$ in lail 1991 divided by the estimated number of students in a grade cohort during 4 years of high school The statustical estimaling method is mprecise above 95° o Algebra 1 percentages include grade 8 Algebra 1 , except indiana. Texas and Verment - Data not ayalable Naluon = Peicent of all public high school students esilmated to take each course. including imputation for nonreporting states Source State Departments ol Education. Data on Public Schools. Fall 1991. Callornia. Fall 1990 Council or Chiel State Schoor Officers. State Education Assessmeni Center. Washinglon. DC. 1993

TABLE 6
PERCENTAGE OF STUDENTS IN EACH GRADE TAKING ALGEBRA (October 1991)

Algebra 1/Integrated Math 1

state	\% of Grade 8	\% ol Grate 9	\% of Grade 10	\% of Grade 11	\% of Grade 12
Alabama	10	46	17	7	1
California	14	40	26	4	1
Connecticut	17	41	15	6	,
Dist. of Columbia	29	31	30	13	6
Florida	9	26	25	13	7
Idaho	14	33	13	2	3
Kentucky	12	51	15	6	3
New York	11	59	10	1	. 1
North Carolina	18	32	26	10	3
North Dakota	20	76	19	7	2
Ohio	13	25	22	21	9
Puerto Rico	-	8	68	16	8
South Carolina	14	41	15	3	4
Utah	35	27	21	8	3
West Virginia	12	37	19	8	3

Algebra $2 /$ ntegrated Math 3

Alabama	-	2	12	29	8
California	-	3	8	23	7
Connecticut	-	2	14	31	11
Oist. of Columbia	-	1	10	18	13
Fiorida	-	1	11	20	14
Idaho	-	11	25	24	4
Kentucky	-	3	14	31	13
New York	-	2	6	36	2
North Carolina	-	1	13	25	16
North Dakota	-	1	21	44	10
South Carolina	-	2	15	32	5
Utah	-	6	18	21	9
West Virginia	-	2	17	21	10

Source Slate Depariments ol Eucucaton. Data on Public. Schoots. Fall 1991 Calitomia Fall 1990 NCES. CCD Fall Membership 1991
Council ol Chrel State Schoot Ofticers. State Education Assessment Center. Washmgton DC 1993
(1983). Calculus (level 5) is an indicator of students intending to major in sciences, engineering, or mathematics in college.

The state percentages in Table 5 are based on the total population of public high school students in 1991-92. A total of 91 percent of students take firstyear algebra or integrated mathematics by the time they graduate. The state percentages of students taking algebra" vary from over 95 percent (15 states) to 58 percent (Hawaii). The percentages for algebra $1 /$ integrated mathematics 1 include enrollments during high school as well as in grade 8. State enrollments in algebra 2 vary from 73 percent (ivaine) to 31 percent (Hawaii), with the national average at 55 percent. In calculus, state percentages vary from 21 percent (Wisconsin) to 4 percent (Mississippi, Hawaii), with the national average at 11 percent.

[^9]Many states and districts established a goal of increasing the proportion of students that take algebra 1 , or integrated mathematics, as well as more advanced high school mathematics courses, to meet their graduation requirements. Many states have worked toward this goal through state curriculum standards and frameworks for districts and schools to use in organizing the mathematics curriculum. Louisiana and North Carolina have a state graduation requirement that students pass algebra 1 or integrated mathematics 1.

Figure 3 illustrates a rank-ordered bar graph of the proportion of students taking formal mathematics level 3 by graduation. If we use the completion of algebra 2 or integrated mathematics 3 as an indicator of the proportion of graduates taking three high school mathematics courses, as recommended by the National Commission, 55 percent of U.S. students are meeting this goal set in 1983. States vary from 31 to 76 percent of students meeting the three-course goal.

Another way to analyze course taking in science and mathematics is to examine the patterns of enrollment during secondary education. Table 6 provides a disaggregation of the algebra 1 and 2 enrollments by grade. Among the 15 states that collect course data by grade, 9 states (Alabama, California, Connecticut, District of Columbia, Kentucky, New York, North Dakota, South Carolina, and Utah) have over 50 percent of studerts.taking algebra 1 or integrated mathematics 1 by the ninth grade. The sum of the grade-by-grade data is over 100 percent for 3 reporting states (District of Columbia, North Dakota, and Puerto Rico), indicating that some students repeat the course at two grade levels. Enrolling more students in algebra 1 by ninth grade does have a positive relationship to advanced course taking in mathematics. Five of these states exceed the national average for students taking advanced mathematics courses at level 4 or above. The grade-level data on algebra 2 show differences between states in enrollment patterns, with the percentage taking alge bra 2 before grade 11 varying from 6 percent (New York) to 36 percent (Idaho). The most common grade for taking algebra 2 is grade 11 , accounting for half of the algebra 2 enrollment. Seven states had more than 10 percent of 12 th grade students taking this course.

The total percentage of students who take algebra 2 is clearly related to further mathematics study in high school. Of the 20 states with more than 55 percent of students taking algebra 2 (see Table 5), 16 states exceeded the average of 40 percent of students taking trigonometry or calculus. Only two states (New York, Ohio) had algelra 2 enrollments below the national average (55 percent) but advanced enrollments above the national average (40 percent).

FIGURE 3
PERCENTAGE OF HIGH SCHOOL STUDENTS TAKING ALGEBRA 2/INTEGRATED MATH 3 BY GRADUATION (1991-92)

Source Slate Departments of Education. Data on Public Schoors. Fall 1991. Caitloma Fall 1990
Council of Chiel Slate School Oiticers State Education Assessment Center. Washington. DC. 1993

High School Science

The Council staff worked with state science supervisors to develop a science course taxonomy and to determine which courses and levels should receive primary emphasis in reporting state data. In the 1990 and 1992 reports, enrollments in biology, chemistry, and physics are used as major indicators of student participation and progress in high school science. Enrollments in these subjects were collected at four levels: first-year basic/applied, first-year general, sec-ond-year advanced, and advanced placement. In addition, states reported high school enrollments in introductory high school science courses in earth science, physical science, and general science, and enrollments in new "integrated science" courses.

Because states reported data on all science courses, total state enrollments in science can be aggregated by both level and subject.

Table 7 shows the total percentage of students taking a science course as of October 1991. High school science enrollments were aggregated to three levels: (1) introductory courses (general science, physical science, first-year earth science, or integrated science, i.e., courses typically taken at grade 9); (2) firstyear biology and life science (often taken at grade 10 or grade 9); and (3) first-year chemistry and physics and advanced or second-year science.

TABLE 7
COURSE ENROLLMENTS IN HIGH SCHOOL SCIENCE BY LEVEL AS A PERCENT OF STUDENTS IN GRADES 9-12 (October 1991)

State	Introductory Courses	Biology 1st Year	Chemistry, Physics, \& Advanced	Total Science	\% Change Chemistry, Physics, \& Adv'd 1990 to '92
Alabama	24 \%	27 \%	20%	72 \%	2%
Alaska	-	-	-	-	-
Arizona	-	-	-	-	-
Arkansas	35	25	19	80	8
California	17	24	16	39	1
Colorado	21	21	23	69	-
Connecticut	23	25	34	82	4
Delaware	19	25	18	64	-3
Dist. of Columbia	25	25	20	70	4
Florida	29	26	32	88	4
Georgia	-	-	-	-	-
Hawaii	31	25	18	77	-2
Idaho	26	22	20	70	3
Illinois	-	-	-	-	-
Indiana	20	26	24	70	0
lowa	29	30	28	87	
Kansas	27	29	24	84	3
Kentucky	13	27	24	64	1
Louisiana	-	--	-	-	-
Maine	-	23	28	-	-
Maryland	-	-	-	-	-
Massachusetts	-	-	-	-	-
Michigan	-	-	--	-	-
Minnesota	11	27	31	69	8
Mississippi	9	33	37	80	2
Missouri	28	24	31	84	4
Montana	24	25	27	76	3
Nebraska	25	28	23	80	7
Nevada	24	27	22	73	8
New Hampshire	-	-	-	-	-
New Jersey	-	-	-	-	-
New Mexico	23	30	18	72	
New York	29	27	26	86	2
North Carolina	28	27	22	78	6
North Dakota	29	27	34	91	9
Ohio	24	24	24	73	4
Oklahoma	24	25	22	75	9
Oregon	20	22	19	67	-
Pennsylvania	22	24	29	76	2
Puerto Rico	30	23	22	75	-
Rhode Island	-	$\bar{\square}$	-	-	-
South Carolina	29	26	21	76	3
South Dakota	-	-	-	-	-
Tennessee	26	26	18	70	2
Texas	24	28	20	72	3
Ulah	20	25	20	45	-
Vermont	20	21	26	72	-
Virginia	26	25	27	79	2
Washington	-	-	-	-	-
West Virginia	26	27	24	78	3
Wisconsin	24	28	30	88	2
Wyoming	24	21	19	67	1
SUM (38 states)	23 \%	26 \%	24 \%	75%	+3\%

COURSE ENROLLMENTS IN HIGH SCHOOL SCIENCE BY LEVEL
(Percent of Grade 9-12 Students in October 1991)

Introductory (earth. physical, general)
Biology, first year
Chemistry, Physics, \& Advanced/second year Total

23%
5%
The total national enrollment in science was 75 percent of grade 9-12 students, which is an increase of 3 percent from 1989-90. About 7 of 10 high school students were taking a science course in Fall 1991. State totals vary from 59 (California) to 91 percent (North Dakota). Student enrollments in chemistry, physics, and advanced/second-year science increased 3 percent (to 24 percent), which accounts for the overall increase in science. The percentage taking introductory and biology courses remained constant. The percentage of students in higher level science study varies by state from less than 1 in 5 students to more than 1 in 3 students.

Table 8 shows the proportion of public high school students who are estimated to take first-year biology, chemistry, and physics by the time they graduate. The national and state percentages are based on the population of public high school students in each state.

PERCENT OF STUDENTS TAKING SELECTED SCIENCE COURSES BY GRADUATION (1991-92)

Biology, 1st year

Chemistry. 1st year
Physics, ist year
Physics, 1st year

Most states have a very high proportion of students taking first-year biology by graduation. Based on 1991-92 data, 26 states have 95 percent or more srudents taking biology. It is likely that from 5 to 10 percent of students take first-year biology more than once. or take more than one course at this level, based on a comparison of the total from state data with the national transcript study (Westat, 1993). In many states, the increase to two or three graduation requirements in the 1980s means that the typical student now takes an introductory science course (earth, physical, general, or integrated science) and a course in biology. In a few states, such as Mississippi, biology is the first science course in high school. At least one course in biology is found in the science curriculum of virtually all U.S. students.

Most states reported data on enrollments in "general" first-year hiology courses separately from "applied" first-year biology. On average, 16 percent, or one of $\cdot 1 \mathrm{x}$ students, take an "applied" high school biology course. (State-by-state data are in Appendix Table A-12.)

Appendix Table A-10 shows state enrollments by

TABLE 8
PERCENTAGE OF HIGH SCHOOL STUDENTS TAKING SELECTED SCIENCE COURSES BY GRADUATION (1991-92)

State	$\begin{aligned} & \text { Biology } \\ & \text { ist Year } \end{aligned}$	Chemistry 1st Year	Physics 1st Year
Alabama	95+ \%	43%	16 \%
Alaska	-	-	-
Arizona	-	-	$\overline{-}$
Arkansas	$95+$	43	14
California	89	33	15
Colorado	82	43	22
Connecticut	$95+$	63	37
Delaware	92	42	19
Dist. of Columbia	85	61	17
Florida	$95+$	47	21
Georgia	-	-	-
Hawaii	$95+$	41	24
Idaho	87	44	14
Illinois	-	-	-
Indiana	$95+$	47	20
lowa	$95+$	64	30
Kansas	$95+$	49	22
Kentucky	$95+$	51	15
Louisiana	-	-	-
Maine	$95+$	69	50
Maryland	--	-	-
Massachuselts	-	-	-
Michigan	-	52	25
Minnesota	$95+$	52	25
Mississippi	$95+$	57	17
Missouri	90	46	18
Montana	$95+$	55	27
Nebraska	$95+$	50	24
Nevada	$95+$	43	18
New Hampshire	-	-	-
New Jersey	-	$\bar{\square}$	16
New Mexico	$95+$	40	16
New York	$95+$	58	28
North Carolina	$95+$	53	15
North Dakota	$95+$	67	28
Ohio	93	53	22
Oklahoma	$95+$	39	11
Oregon	84	41	21
Pennsylvania	92	59	31
Puerto Rico	83	62	34
Rhode Island	5	-	17
South Carolina	$95+$	56	17
South Dakota	-	-	-
Tennessee	$95+$	46	13
Texas	$95+$	46	15
Utah	$95+$	38	16
Vermont	82	52	31
Virginia	$95+$	59	25
Washington	-	-	-
West Virginia	$95+$	48	13
Wisconsin	$95+$	59	27
Wyoming	82	36	18
NATION	$95+\%$	49 \%	21 \%

Note tach slate percent is a statistical estrmate of course laking of public high school students by the time they graduate based on the tolal course enrollment in grades $9-12$ in lall 1991 divided by the estimated number of sludents in a grade cohorl during 4 years of high scheol the statistial estimating method is mprecise above 95\% - Data not available Nation : Percent ot all public high school sludents estimated lo lake each course including imputation for nonreporting stales
Source Stare Denartments of Educalion Data on Fublic Schoois. Fall 1991 Cahtorna Fail 1990
Councir of Chiel State Schoct Olticers. State Education Assessmen Center Washnglon DC. 1993

FIGURE 4
PERCENTAGE OF HIGH SCHOOL STUDENTS TAKING CHEMISTRY BY GRADUATION (1991-92)

Souce Slate Depariments of Education Data on Public Schools. Fall 1991 Califorma. Fall 1990
Council of Chuel State School Otticers. State Education Assessment Center Washington, DC. 1993
grade for first-year biology, gencral and applied. In the 15 states that reported science course data by grade, over 65 percent of students take first-year general biology in grade 10. Three states have large enrollments in basic biology (Califormia, Connecticut, Florida), and the largest proportion take the course in grade 10 .

Figure 4 shows a bar graph of states rankordered by the proportion of students taking chemistry by graduation. As of 1991-92, a total of 49 percent of U.S. students were taking chemistry by graduation. If we use this course as an indicator of the proportion of graduates taking three high school science courses, the number recommended by the National

Commission, the data show that one-half of students are meeting this goal. State enrollments vary from 69 percent (Maine) to 33 percent (California). Nineteen states are above the national average of 49 percent of students taking three high school science courses.

Physics enrollments vary by state from 50 percent (Maine) to 13 percent (West Virginia), and the national average is 21 percent of students taking physics by graduation.

Science and Mathematics Course Enrollments as Percent of 9th Grade Entrants

Enrollments in science and mathematics are generally analyzed in terms of percentage of graduates that
take a given course (e.g., algebra 1), or percentage that reach a standard for course taking (e.g., three credits). Many policymakers and educators ask an additional question about science and mathematics: What proportion of all entering high school students take science and mathematics, including graduates as well as nongraduates?

The rate of science and mathematics course taking for all entering high school students can be estimated by the number of students enrolled in a given course in 1991-92 divided by the 9 th grade student membership in the 1988-89 school year.

	Enrollments as a Percent of Graduates 1991-92	Enrollments as a Percent of Ail Siudents Entering 9th Grade in 1988-89
Algebra 1	91	78
Algebra 2	55	47
Biology. 1st year	$95+$	93
Chemistry, 1st year	49	42

The differences between the course-taking rates (e.g., 13 percent for algebra 1 and 7 percent for chemistry) represent the portion of students who drop out of school and are not educated in these subjects during the typical 4-year period of high school. These figures may represent a more accurate picture of the effectiveness of our schools in providing science and mathematics education opportunities. The state-by-state statistics on percentage of all entering high school students taking mathematics and science are reported in Appendix Table A-1 1.

TRENDS IN COURSE ENROLLMENTS: 1990 TO 1992

The Science-Mathematics Indicators are being reported biennially for the purpose of analyzing trends in indicators over time. The 1992 results provide strong evidence that enrollments in high school mathematics and science courses continue to rise in the early 1990s, as they did from 1982 to 1990.

National transcript studies conducted by NCES in 1982, 1987, and 1990 indicate upward trends in the 1980s (Kolstad \& Thorne, 1989; Westat, 1993):

- Enrollments in Algebra 1 increased from 65 percent in 1982 to 80 percent in 1990, algebra 2 increased from 35 to 56 percent, and calculus increased from 5 to 9 percent.
- In science, biology increased from 75 percent in 1982 to 90 percent in 1990, chemistry increased from 31 percent to 51 percent, and physics increased from 14 percent to 22 percent.

Table 9 provides a summary of change in course enrollments by state from the 1989-1990 school year to the 1991-92 school year. Trends are analyzed for 24 states that had no changes in their data forms or codes. The results show that 16 of 24 states experienced an increase in enrollments in algebra 1 (level
1), with increases varying from 2 to 13 percent. The 1992 state data show that 91 percent of students were taking algebra 1 or integrated mathematics 1 by graduation, while 82 percent were taking the course as of 1990 , or an increase of 9 percent over 2 years. ${ }^{\text { }}$ Algebra 2 enrollments increased in 19 states, with increases from 3 percent to 17 percent. The 1992 total for algebra 2 was 55 percent, whereas the 1990 figure was 49 percent, or an increase of 6 percent. Total enrollment in calculus increased an average of 2 percent, with 19 of 24 states showing an increase of 1 to 3 percent.

In science, overall biology enrollments did not rise from 1990 to 1992 because almost all students were taking the course as of 1990, although enrollments did increase in 4 states. Chemistry enrollments increased in 23 of 24 states, and the percentage went up 4 percent nationally. Physics enrollments increased by 1 percent overall, with 19 of 24 states reporting enrollment increases of 1 to 3 percent.

In sum, the trend data on course taking in science and mathematics demonstrate that high school enrollments continue to increase in the early 1990s in a majority of reporting states. The state-by-state trends show that the pattern of increasing enrollments observed from 1982 to 1990 is continuing in the early 1990s.

Do Trends Reflect Watered-Down Science and Mathematics? Do More Courses Mean Higher Achievement?

On learning of increased course taking since states raised graduation requirements, some educators have asked whether these trends are real or cosmetic: Did schools simply change the names of existing courses or simplify more demanding science and mathematics courses to allow more students to pass? For example, in commenting on the state policy reforms in the 1980s, Diane Ravitch claimed that "in fact, what happened was that people took the same courses they were teaching anyway and retitled them" (Viadero, Education Week, 1993). New research has demonstrated that this view is not accurate. Porter and his colleagues at the University of WisconsinMadison have just completed a new study for the NSF on the effects of state requirements on course enrollments and course content. The results show that the curriculum content of college-prep courses such as algebra and chemistry were not "watered

[^10]TABLE 9
PERCENT CHANGE IN STUDENTS TAKING MATHEMATICS AND SCIENCE COURSES: 1990 TO 1992

State	Algebra $1 /$ Integrated Math 1	Algebra $2 /$ Integrated Math 3	Calculus	Blology	Chemistry	Physics
Alabama	13	4	1	0	5	-5
Arkansas	7	7	1	0	10	1
Calitornia	-3	-2	0	-2	0	-1
Connecticut	7	-2	0	0	1	1
Florida	0	4	-2	0	3	2
Hawaii	6	-2	0	7	1	3
lowa	3	17	3	0	7	3
Kentucky	8	7	1	0	6	1
Maine	7	9	-	1	11	-
Minnesola	5	7	1	0	8	2
Mississippi	10	6	1	0	2	0
Missouri	0	5	3	4	5	2
Nebraska	10	4	8	0	4	3
New Mexico	0	4	0	0	7	1
New York	4	-1	1	0	2	0
North Dakota	0	12	3	0	13	4
Ohio	6	3	2	-2	4	2
Oklahoma	0	3	-2	2	2	1
Pennsylvania	0	3	3	0	3	2
South Carolina	7	-1	2	0	5	1
Tennessee	2	3	1	7	4	2
Texas	5	13	2	0	6	3
Virginia	9	3	3	0	2	2
West Virgunia	6	7	5	0	8	2
NATION	+9	$+6$	+2	0	+4	$+1$

[^11]down" to accommodate new requirements and more students. The content of algebra 1 was quite consistent; and in schools that required the course of all students, the content was virtually the same as algebra 1 in schools in which the course is voluntary (Porter et al., 1992). The research did show that the content of first-year biology courses was highly varied, although the variation partly results from the major differences in content and approach among the various biology textbooks.

Recent data from the 1990 NAEP mathematics assessment confirm the results of previous studies that the level of mathematics reached in high school is strongly related to student adhievement in mathematies. Data on mathematics course taking of 12th grade students in the 1990 NAEP showed significant increases in mathematics proficiency scores with each additional mathematics course. For example, students who did not take algebra had an average scale score of 266 , completers of algebra 1 averaged 286, algebra 2 completers scored at 309 , and students taking a fourth level of mathematics averaged 327. The same pattern of increases related to course enrollments held for students in all racial/ethnic and SESS groups (Mullis, et al., 1991, p. 126-127).

Advanced Mathematics and Science Courses Enrollments

State data on student enrollments in advanced mathematics and science courses beyond first-year biology, chemistry, and physics provide another indicator of the proportion of students preparing for college majors in scientific fields. A uscful state indicator is the proportion of students taking AP mathematics and science courses. Since AP courses use a standard curriculum, state enrollment figures provide a comparable measure of advanced instruction in mathematics and science.

NUMBER OF U.S. STUDENTS
taking advanced courses
PER 1,000 12TH GRADE STUDENTS

	Advanced Placement	Other Advanced
Calculus	33	70
Biology	21	242 (2nd yr//advanced)
Chemistry	11	32
Physics	7	12
Earth Science	-	34

The state-by-state figures for enrollments in advanced courses, expressed as the number of students per 1,000, are reported in Table 10. For purposes of comparison, the 12th grade student membership is used as the basis for analysis, even though

TABLE 10
STUDENTS TAKING ADVANCED/SECOND-YEAR MATHEMATICS AND SCIENCE COURSES:
ENROLLMENTS PER 1,000 GRADE 12 STUDENTS (OCTOBER 1991)

state	$\begin{array}{r} \text { Student } \\ \text { Mambership } \\ \text { Grade } 12 \end{array}$	Calculus per 1,000		$\begin{aligned} & \text { Biology } \\ & \text { per } 1,000 \\ & \text { Advanced } \end{aligned}$		Chamistry par 1,000		Physlcs per 1,000		Earth Sclence per 1,000 2nd Year
		AP	Regular	AP	2nd Year	AP	Advanced	AP	Advanced	
Alabama	41,725	34	39	59	215	26	-	13	9	-
Arkansas	27,544	-	61	-	223	-	-	-	0	11
Caitiornia	260,693	-	91	-	156	-	30	-	7	29
Colorado	33,108	-	98	-	224	-	91	-	-	42
Connecticut	28,339	62	79	22	294	13	17	12	-	65
Delaware	5.953	55	54	58	82	15	23	5	6	0
Dist. of Columbia	3.415	-	64	51	-	-	40	11	-	17
Florida	100,210	46	24	22	687	15	17	15	10	88
Hawaii	9,290	37	5	8	65	23	-	9	-	5
Idaho	14,097	43	86	62	181	22	9	6	-	7
indiana	60,657	34	66	35	198	20	80	14	14	27
lowa	31,648	-	118	-	218	-	-	-	9	--
Kansas	25.889	41	75	64	202	26	25	5	-	18
Kentucky	36,131	70	-	27	331	13	50	10	-	-
Minnesota	52,165	-	134	-	382	-	68	-	8	10
Mississiopi	25.713	26	18	31	903	10	61	4	4	9
Missouri	49,503	-	106	-	556	-	94	-	1	56
Montana	9,597	2	57	68	158	25	22	0	0	44
Nebraska	18.106	-	140	-	218	-	-	-	-	--
Nevada	11,283	15	35	13	284	15	21	4	16	16
New Mexico	15,923	34	46	17	146	19	-	21	-	68
New York	141,546	98	36	52	121	23	5	25	39	57
North Carolina	64,061	46	39	32	200	17	25	5	9	28
North Dakota	7.821	-	65	-	391	-	47	-	0	31
Ohio	113.420	31	66	25	217	18	-	11	-	27
Oklahoma	35,684	20	38	7	412	9	27	9	-	10
Oregon	30,226	34	69	38	89	19	27	14	-	9
Pennsylvaniá	107.758	59	129	-	169	-	73	-	51	24
South Carolina	34,638	59	29	34	154	14	29	6	6	-
Tennessee	49.011	-	55	21	142	10	13	9	-	-
Texas	177,332	-	69	-	205	-	30	-	12	69
Utah	27,575	123	31	94	146	39	10	18	8	7
Vermont	5.529	32	82	47	175	7	15	5	0	25
Virginia	61.328	65	75	51	136	27	25	g	5	45
West Virginia	21,611	33	36	10	350	2	52	0	-	2
Wisconsin	53,734	86	124	31	187	27	60	14	39	19
Wyoming	6.425	34	129	15	180	7	48	-	-	-
SUM (37 states)		33	70	21	242	11	32	7	12	34

Nole Dala not availabie
Source State Departments ol Educalion. Data on Public Scitoots. Fall 1991. Callornia. Fall 1990 NCES. CCD Fall Membership 1991
Council ol Chrel State Schoo! Ollicers. State Education Assessment Center. Washmglon. DC 1993
students may actually be taking advanced courses before 12 th grade. The state data show that in each subject area, some states exceed the national average.

States with more than 60 of 1,000 students taking AP calculus are Connecticut, Kentucky, New York, Utah, Virginia, and Wisconsin. In addition, states
with more than 100 of 1,000 students taking regular or AP calculus are Delaware, Idaho, Indiana, Iowa, Kansas, Minnesota, Missouri, Nebraska, Oregon, Pennsylvania, Vermont, and Wyoming.

Enrollments in AP science courses (sum of biology, chemistry, and physics) were over 60 of 1,000
students in Alabama, Delaware, District of Columbia, Idaho, Indiana, Kansas, Montana, New York, Oregon, Utah, Virginia, and Wisconsin.

A wide variety of courses are included under the category of second-year or advanced science (other than AP), and the courses vary from state to state. For example, schools in some states offer many options for second-year liology, such as botany, zoology, and anatomy and physiology, in addition to advanced biology. In several states, such as Mississippi, Missouri, and Oklahoma, a large portion of students take a second year of biology to meet graduation requirements. Other states have a narrower range of advanced or second-year science courses. Considering these differences, states with more than 300 of 1,000 students taking a secondyear or advanced science courses (sum of biology, chemistry, physics, and earth science) were Colorado, Connecticut, Indiana, Kentucky, Minnesota, Mississippi, Missouri, Nevada, North Dakota, Oklahoma, Pennsylvania, Texas, West Virginia, and Wisconsin.

Relationship of State Policies to Course Enrollments

Policy Issues:

- Do states with policies setting higher coursc requirements for graduation have higher rates of course taking in science and mathematics?
- What is the role of state curriculum frameworks or guides in the level of student participation in science and mathematics?

National trends on course taking indicate enrollments rose from 1982 to 1990 after many states raised graduation requirements in science and mathematics. The first Council report on state-level sciencemathematics indicators in 1990 analyzed differences in course enrollments between groups of states with different course requirement levels. Now, with the 1993 Council report, it is possible to track the rate of change in course enrollments in relation to individual state requirements.

A 1992 Council survey of state policies showed the following totals among the 50 states (Blank and Dalkilic, 1992):

Graduation Requirements

- 10 states require three credits of mathematics, 3 states require three science credits
- 3 states require two credits of mathematics and science plus one additional credit in mathematics or science
- 31 states require 2 mathematics credits, 36 states require two science credits
- 2 states require one credit in science
- 7 states leave the policy decision to local districts.

Curriculum Frameworks

- 17 states have an advanced or honors diploma with higher mathematics credit requirements, and 16 require higher science credits
- 41 states have state curriculum frameworks in mathematics and 4 states are developing frame works
- 30 states have curriculum frameworks in science and 15 states are developing frameworks.

Mathematics

To analyze the relationship of state requirements to course taking in Table 11, states were divided into three categories: (1) states requiring two and a half to three Carnegic course credits, (2) states requiring two credits, and (3) states requiring one credit or no state, only local, requirements.

- The states with higher requirements (2.5 to 3) had slightly fewer students taking alge bra $1(87$ percent) but significantly more students taking algebra 2 (59 percent) than states requiring 2 credits (89 percent algebra 1, 50 percent algebra 2).
- The high-requirement states had slightly more students taking trigonometry/precalculus (32 vs. 27 percent).
- The five states relying on local policies had slightly higher algebra 1 enrollments (93 percent).
- In total mathematics enrollment, the states with high requirements (2.5 to 3) had 12 percent more students taking mathematics (94 percent) than states in the other two categories (both 82 percent).

All of the states with high course credit requirements, except Pennyslvania, have had state curriculum frameworks in place and have revised, or are revising, the state frameworks to meet the NCTM Curriculum Staindards.

A state-by-state analysis of the percentages of change in mathematics enrollments from 1990 to 1992 (from Table 9) was categorized according to state credit requirements, and the results are in Appendix Table A-17. At the level of algebra 1 and 2 , the average enrollment increases are slightly higher for high requirement states (2.5 to 3 credits) than states requiring 2 credits (4.8 percent $\mathbf{v s}$. 4.4 for algebra $1 ; 4.3$ vs. 4.0 for algebra 2). The rates of change in calculus do noi differ. The three states that rely on local school boards to set requirements have very similar rates of increase as other states, except algebra 2 rose by 17 percent in Iowa and calculus increased 8 percent in Nebraska.

Science
Table 12 shows the differences in 1991-92 science enrollments by levels of state graduation requirements.

- The states with higher requirements (2.5 to 3) had more students taking chemistry (53 percent) and physics (25 percent) than states requiring two credits (47 percent, 19 percent).
- The science enrollments for the five states with local policies did not differ from the states with high state requirements.
- The total percent of students taking science among high requirements states (81 percent) was almost 10 percent greater than states in the other two categories (72 percent, 74 percent).

The states with high course credit requirements in science, except Pennsylvania, have also had state science curriculum frameworks in place.

An analysis of change in science enrollments from 1990 to 1992 by state requirements is shown in Appendix Table A-18. There are small differences in science enrollments between the three levels of requirements. The average increase in chemistry enrollments in high-requirement states was 4.5 percent, with Arkansas having a 10 -percent increase. Among states requiring two credits, the average increase in chemistry was 4.9 percent, due mainly to more than 10 percent increases in Maine and North Dakota. Two local-policy states, Iowa and Minnesota, had above-average increases in chemistry.

One finding from the analysis of enrollment trends by state requirenents is that states that rely on local board policies have higher enrollments than many states with state requirements. In practice, states relying on local boards to set policies on graduation requirements (e.g., Iowa, Minnesota, and Nebraska) may have higher requirements and rates of sciencemathematics course taking due to local policies that consistently support science and mathematics education. Local policies in turn may reflect the views of science and mathematics professional organizations, admussions policies of higher education institutions, or curriculum recommendations from state education departments.

In sum, in 1991-92, the states with higher graduation requirements had siguificantly greater total enrollments in mathematics and science; and they had greater enrollments in algebra 2, chemistry, and physics than did the states with lower requirements. Individual states showed significant increases in enrollments at each level of graduation requirements, particularly in algebra 1, algebra 2 , and chemistry. The average enrollment increases for these courses were slightly greater for high-requirement states than for other states.

TABLE 11
PERCENTAGE OF STUDENTS TAKING MATHEmATICS COURSES by State graduation requirements (1991-92)

state

Algebra $2 /$
Integrated Math 3

Trigonometry/ Precalculus

Total

 Math
2.5 to 3 Credits

Arkansas
Connecticut
Florida
Kenlucky
New Mexico
Pennsylvania
South Carolina
Texas
Vermont
Virginia
Sum (10 states)

$95+$	55	27	94
81	59	38	94
78	46	23	91
89	61	30	88
$95+$	51	23	91
88	60	50	$95+$
76	54	35	$95+$
87	67	26	94
70	53	30	78
90	58	37	68
87	59	$\mathbf{3 2}$	$\mathbf{9 4}$

2 Credits

Alabama	83	50	19	76
California	89	42	21	77
Delaware	67	42	28	70
Dist of Columbia	95 +	41	17	78
Hawaii	58	31	19	89
Idaho	74	66	24	72
Indiana	85	53	30	78
Kansas	95 +	62	32	90
Maine	91	73	51	-
Mississippi	$95+$	64	29	87
Missouri	95 +	63	16	85
Montana	90	58	36	84
Nevada	80	43	19	78
New York	83	45	28	84
North Carolina	88	54	40	88
North Dakota	$95+$	76	49	91
Ohio	86	50	35	84
Oklahoma	$95+$	63	23	81
Oregon	80	46	23	79
Tennessee	81	57	29	79
Utah	$95+$	66	34	88
West Virginia	79	49	27	89
Wisconsin	$95+$	58	34	$95+$
SUPM (23 states)	89	50	28	82
Local Board Policies				
Colorado	80	48	32	74
lowa	$95+$	67	32	96
Minnesota	$95+$	62	34	77
Nebraska	$95+$	58	22	87
Wyoming	$95+$	59	28	76
SUM (5 states)	93	59	31	82
NATION	91	55	29	87

[^12]TABLE 12
PERCENTAGE OF STUDENTS TAKING SCIENLE COURSES BY STATE GRADUATION REQUIREMENTS (1991-92)

STATE

2.5 to 3 Credits

Arkansas	$95+$	43	14	80
Florida	$95+$	47	21	88
Pennsylvania	92	59	31	76
Vermont	82	52	31	72
Virginia	$95+$	59	25	79
SUM (5 states)	$\mathbf{9 5 +}$	$\mathbf{5 3}$	$\mathbf{2 5}$	$\mathbf{8 1}$

1 to 2 Credits

Alabama	$95+$	43	16	72
California	89	33	15	59
Conneclicut	$95+$	63	37	82
Delaware	92	42	19	64
Dist. of Columbia	85	61	17	70
Hawai	$95+$	41	24	77
Idaho	87	44	14	70
Indiana	$95+$	47	20	70
Kansas	$95+$	49	22	84
Kentucky	$95+$	51	15	64
Maine	$95+$	69	50	-
Mississippi	$95+$	57	17	80
Missouri	90	46	18	84
Montana	$95+$	55	27	76
Nevada	$95+$	43	18	73
New Mexico	$95+$	40	16	72
New York	$95+$	58	28	86
North Carolina	$95+$	53	15	78
North Dakota	$95+$	67	28	91
Ohio	93	53	22	73
Okiahoma	$95+$	39	11	75
Oregon	84	41	21	67
South Carolina	$95+$	56	17	76
Tennessee	$95+$	46	13	70
Texas	$95+$	46	15	7.
Utah	$95+$	38	16	45
West Virginia	$95+$	48	13	78
Wisconsin	$95+$	59	27	88
SUM (28 states)	$95+$	47	19	72
Local Board Policies				
Colorado	82	43	22	69
lowa	$95+$	64	30	87
Minnesota	$95+$	52	25	69
Nebraska	$95+$	50	24	80
Wyoming	82	36	18	67
SUM (5 states)	$95+$	51	25	74
NATION	$95+$	49	21	75

Source State Departments of Educidion Data on Public Schools. Fall 1991. Cahtroma. Fall 1990 Councif ol Cher State School Olficers. State Educalion Assessment Center. Washinglon. DC. 1993

EQUITY IN SCIENCE AND MATHEMATICS OPPORTUNITIES

Policy Issues:

- Is the gender gap closing in advanced science and mathematics?
- Are minority students increasing their participation in advanced science and mathematics courses?

Gender Differences

National studies have shown that differences in coursc enrollments between boys and girls decreased in the 1980s (Kolstad \& Thorne, 1989; Westat, 1993). State data in the 1990 Council report showed that in most states, girls' and boys' participation in high school science and mathematics was about the same up to and including first-year chemistry and second-year algebra (level 3 mathematics). In 1990, boys had higher enrollments in advanced mathematics and advanced physical sciences. Data on gender differences in course taking are important for assessing progress in schools' efforts to reduce the gender gap in mathematics and science achievement demonstrated in the NAEP achievement scores.

The 1992 state course enrollment data by student gender are shown in Tables 13 and 14. A total of 21 states reported these data (which is an increase from the 16 states in 1990). In mathematics, the enrollments of boys and girls are virtually the same at the level of algebra $1 /$ integrated mathematics 1 in all states. At the level of geometry, algebra 2 , and trigonometry, the enrollment rates do not differ by oender in 10 states, and in the other 10 states slightly more girls are enrolled. Alabama, District of Columbia, Florida, Hawaii, North Carolitna, South Carolina, and West Virginia have $6-10$ percent more girls than boys taking advanced mathematics courses. At the level of calculus, an average of 6 percent more hoys are enrolled than girls. The 1992 mathematics enrollments show an increase from 1990 in the proportion of girls enrolled in trigonometry from 49 to 51 percent and an increase in calculus from 45 to 46 percent.

In high school science, first-year biology enrollments were almost the same in all states. Twelve of 20 states had an average of 4 to 6 percent more girls taking chemistry, and all states had more girls taking advanced biology (sum of 54 percent girls). Among the reporting states, a sum of 12 percent more boys took physics (56 to 44 percent), 6 percent more boys took advanced chemistry, and 20 percent more boys took advanced physics. From 1990 to 1992, the proportion of girls taking physics increased two percent (from 42 to 44 percent). The proportion of girls taking advanced chemistry increased from 45 to 47 percent and the proportion of girls taking advanced physics increased from 36 to 40 percent.

TABLE 13
gendor differences in students taking mathematics courres
(1991-92)

STATE	\% Female Taking Algebra $1 /$ Integrated Math 1	\% Female Taklng Algebra 2 ! Integrated Math 3	\% Femaie Taking Trigonometry/ Precalculus	\% Female Yaking Calculus
	51	54	52	48
Arkansas Califorria	50	51	49	45
Colorado	49	51	49	43
Connecticui	51	52	49	41
Dist. of Columbia	53	60	61	55
Florida	51	54	53	47
Hawaii	52	56	55	45
Idaho	42	50	47	45
lowa	50	52	48	45
Kansas	50	52	48	40
Nevada	52	52	48	52
North Carotina	52	56	54 50	4.5
Ohio	51	51	51	48
Pennsylvania	51	51	54	48
Puerto Rico	51	$\overline{54}$	52	53
South Carolina	51	54 51	46	40
Utah	50	49	50	49
Vermont	51 52	54	52	-
West Virginia	52 49	51	50	46
Wyoming	50	51	48	48
SUM: 1992 (21 states)	50	52 52	51 49	46 45
SUM: 1990 (16 states)	50	52	49	45

Note - Data nol avamable
Sourte State Departments of Education. Data on Puble Schools. Fall 1991 C3htorna Fall 1990 Council of Chuet State Schoor Officers. Sidie Education Assessment Center Washinglon, DC 1993

Race/Ethnic Differences

National sample data in Table 15 are available to analyze differences in course taking by student race/ethnicity. The high school transcript studies conducted by NCES in 1982 and 1990 allow us to assess change in science and mathematics enrollments by race/ethnicity' (Westat, 199.3).

The trend data show that minority students are making some progress in increasing participation in higher level mathematics and science courses. For example, in 1982 the difference between algebra 1 enrollments of whites and black students was over 10 percent, and now the rates are virtually the same. However, the difference in white and black enrollments in algebra 2 has only closed about 2 percent (1990 difference at 13 percent). Hispanic students made the largest increases in algebra 1 and algebra 2 enrollments. Asian American students enroll in algebra 2 and calculus at a higher rate than any group. and the rate of increased enrollment in calculus is 3 times any other group.

In science, rates of enrollment in biology have increased for all race/ethnic groups to virtual parity at this level. Chemistry enrollments have also increased significantly for all groups. Hispanic enrollments more than doubled, whereas black students enrollment increased 19 percent and white students increased 18 percent. Asian students continue to have
the highest enrollments in chemistry.
At this time, states that are developing education data systems based on student records (e.g., Florida, North Carolina, and Texas) can analyze course taking hy race/ethnicity. However, these data were not required for the 1991-92 Council science-mathematics indicators. They are likely to be reported for 1993-94.

Another way to analyac variation in student enrollments in science and mathematics is to identify SES differences of students in the school. Oakes' (1990b) analysis of data from a national sample of secondary schools showed that students in inner-city and low-SES schools have less opportunity to study advanced courses in science and mathematics. Figure 5 shows the extent of lower opportunities in low-SES schools. Figure Sa shows that schools with a high proportion of students from poverty backgrounds have an average of 2.5 classes (sections) of college prep or advanced science per 100 students, whereas schools with a high proportion of wealthy students have over 3 classes of college prep or advanced science and fewer classes of general courses. The patterns are even more distinct in mathematics, with more college prep and advanced mathematics classes, and fewer general mathematics courses, in schools with more wealthy students as compared to

TABLE 14
GENDER DIFFERENC/S IN STUDENTS TAKING SCIENCE COURSES
(1991-92)

STATE	Blology		Chemistry		Physics	
	\% Femals First Year	\% Femala Advanced/AP	\% Female First Year	\% Female Advanced/AP	\% Female Flrst Year	$\%$ Female Adva nced/ap
Arkansas	49	56	53	-		
Calilornia	49	54	51	45	44	41
Colorado	49	56	51 50	45 46	43	41
Connecticut	51	55	52	40	42	33
Dist. ol Columbia	54	66	58	60	37	37
Florida	49	52	53	45	57 50	33
Idaho	47	52	49	49	50	38
Iowa	50	54	51	49	35 41	27
Kansas	49	55	50	44	41	42
Nevada	51	53	52	40	35 45	34
North Carolina	49	61	56	52	45	43
Ohio	51	52	52	45	45 42	43
Pennsylvania	50	57	52	45 50	42 47	36
Puerto Rico	51		52	5	47	44
South Carclina	50	54	54	50	54	
Utah	48	52	54 46	30	43	36
Vermont	50	54	51	52	33	32
West Virginia	48	54	55	46	43	22
Wisconsin	49	54	52	46	42	32
Wyoming	49	56	50	49	40 32	35
SUM: 1992 (20 states)	49	54	52	47	44	
SUM: 1990 (16 states)	50	55	52	45	42	36

Note - Dala not available
Source State Departments ol Educathon Data on Public Schools. Fall 1991. Caltorma. Fall 1990 NCES. CCO Fall Membership 1991
Councti ol Chiel Siate School Oificers, Slate Educalion Assessment Center. Washingion. DC. 1993.
schools with more students from poverty backgrounds.

Similarly, Figure 5b shows that schools with high percentages of white students have more college prep and advanced mathematics and science classes, and fewer general level classes, than schools with lower percentages of white students (i.e., more minority students).

Results from the National Education Longitudinal Study of 1988 (Horn \& Hafner, 1992) and the 1990 NAEP mathematics assessment (Mullis, et al., 1991) showed that twice as many eighth grade students from high-SES families took algebra in eighth grade than students from low-SES families.

Science and Mathematics
 Enrollments in Large Cities

In 1992, the Council began a pilot study of indicators of science and mathematics in large city school systems. State education representatives have expressed strong interest in analysis of variation in science and mathematics indicators within states, in addition to state-to-state analysis. Also, NSF is beginning an urban science and mathematics initiative that will focus support for education improvement in large cities. Five states reported data on their largest

[^13]cities to the Council. As a result, data were collected on 32 of the 75 largest cities in the United States.

Table 16 displays the average enrollments in high school mathematics courses for the cities in comparison to the state averages. The high and low city is also reported for each state. ${ }^{4}$ In California, Florida, and Texas, the average enrollments in mathematics for large cities are very similar to the state averages. The city averages are lower than the state in New York and Ohio. In each, there is substantial variation in the course enrollments among the cities; for example, in California, algebra 1 varies from over 95 percent in the city with a high enrollment to 54 percent in the city with the low enrollment, and calculus varies from 11 to 3 percent.

The data on science in Table 16 indicate that science enrollments in large cities are very similar to state averages, but there is considerable variation within states. For example, in Ohio, biology enrollments in cities vary from over 95 percent to 78 percent; and physics enrollments vary from 22 to 7 percent.

These data show that the science and mathematics enrollments differ significantly from city to city, but there is no overall pattern of city averages' being significantly lower than state averages. In some states, the composite average among the cities is very similar to the state average. Also, the average enrollment level for any large city school district is likely to
include wide variation in science and mathematics enrollments; thus a city average can mask differences among schools. Further analyses of science and mathematics in large cities can be conducted with state data to assess the variation in science and mathematics participation between and within large cities.

TABLE 15
CHANGES IN Ma IHEMATICS AND SCIENCE ENROLLMENTS BY RACE/ETHNICITY: 1982 TO 1990
(Percent of Students Taking Course by Graduation)

	1982	1990	Percent
Algebra 1			
Asian American	66	72	6
Black	57	78	21
Hispanic	55	81	26
White	68	77	9
Algebra 2			
Asian American	56	59	3
Black	24	39	15
Hispanic	21	39	18
White	39	52	13
Calculus (Regular \& AP)			
Asian American	19	34	15
Black	2	4	2
Hispanic	2	7	5
White	8	11	3
Biology. 1st year			
Asian American	82	90	8
Black	71	91	20
Hispanic	67	90	23
White	77	92	15
Chemisiry, 1st year			
Asian American	51	64	13
Black	21	40	19
Hispanic	15	39	24
White	34	52	18

[^14] Department of Education. 1393.

FIGURE 5
OPPORTUNITIES TO ENROLL IN SCIENCE AND MATHEMATICS BY SCHOOL SOCIOECONOMIC STATUS (SES)
and Racial composition
Sections (Classes) per 100 students

Source Oakes. J. Mulliplying Inequalities. The Etiects of Race. Social Class. and Iracuing on Opportunites to Learn Mathemaics and Science. Santa Monica. CA. 1990. 136 Councll ol Chuel State School Officers. Slate Education Assessment Center, Washington. DC. 1993

TABLE 16
HIGH SCHOOL MATH AND SCIENCE IN LARGE CITIES:
PERCENTAGE OF HIGH SCHOOL STUDENTS TAKING SELECTED MATHEMATICS AND SCIENCE COURSES BY GRADUATIDN (1991-92)

STATE/City	Algebra $1 /$ Sctegrated Math 7	Algebra $2 /$ Integrated Math 3	Calculus	Biology 1st Year 1st Year	Chemistry tst Year	Physics 1st Year
California	89	42	9	89	33	15
11 Large Cily Districts. Average	91	42	8	90	33	16
High	$95+$	63	11	$95+$	50	40
Low	54	28	3	77	23	7
Florida	78	46	7	$95+$	47	21
4 Large City Districts. Average	77	43	11	$95+$	48	22
High	$95+$	47	15	$95+$	52	30
Low	70	41	8	90	45	18
New York	84	45	13	$95+$	58	28
3 Large City Districts, Average	80	28	12	81	50	26
High	81	34	13	$95+$	$95+$	33
Low	51	28	8	79	48	26
Onio	86	50	10	93	53	22
5 Large City Districts, Average	74	55	6	95	46	16
High	87	61	15	954	64	20
Low	55	43	3	78	26	7
Texas	87	67	7	$95+$	46	15
9 Large City Districts. Average	90	67	7	95 +	46	14
High	$95+$	83	10	$95+$	71	27
Low	74	49	5	83	38	10

Note Includes Grade 8 enrollment in Algebra 1 Data were reported io CCSSO by state deparments of education as part of a special study ol scrence and math indicators in 32 of the 75 brgest chics
Source State Dedarments of Eoucation Data on Public Sithcots Fall 1991. Callforma. Fall 1990
i.ouncil ol Chel Stale School Oificers. State Education Assessmenl Center Washington. DC. 1993

INDICATORS OF TEACHER QUALITY, SUPPLY, AND SHORTAGE

Policy issues:

- Has the supply of qualified teachers in science and mathematics improved?
- How well prepared are our science and mathematics teachers? Is there greater equity in the science and mathematics teaching force?

National commission reports of the 1980s highlighted the problem of underqualified teachers in science and mathematics and impending teacher shortages (National Science Board, 1983; Carnegie Forum on Education and the Economy, 1986). Some data showed that many well-qualified teachers were leaving science and mathematics teaching, few new college graduates were going into teaching, and a large portion of current teachers were not adequately prepared in science and mathematics (Aldrich, 1983; Johnston \& Aldridge, 1984; Darling-Hammond, 1984).

Many of the state policy initiatives in the 1980s were aimed at improving the supply of teachers by raising teacher pay, providing loans and grants for students entering teacher training, and developing alternative routes to teacher certification. Other state policy initiatives were aimed at raising the preparation and qualifications of teachers through higher standards for initial teacher certification, providing indicator programs for new teachers, and requiring additional education for recertification (NGA, 1986; Blank \& Espenshade, 1988).

Indicators can assist policymakers and educators in determining the extent of change since the 1980s, particularly at the state level, where many decisions affect teachers. There are three key policy questions that need to be addressed by the indicators: first, whether states and school districts are attaining an adequate supply of science and mathematics teachers; second, the degree of improvement in the qualifications of the science and mathematics teaching force, as recommended by the NEGP; and third, the extent of improvement in equity of the teaching force.

TEACHER SUPPLY IN SCIENCE AND MATHEMATICS

A first level of analysis is whether the overall supply of teachers is sufficient. Under existing hiring standards, are school districts able to hire teachers for each classroom? National statistics do not show current shortages of teachers in science and mathematics. The rate of teacher attrition in science and mathematics is now relatively low-only 5 percent annual-ly-the same figure as for all teachers (Bobbitt, et al., 1991). Also, the number of new college graduates with majors in science and mathematics education has gone up significantly in the 1980s (NCES, 1985, 1990). Furthermore, school districts are depending

Source State Departments of Education. Data on Public Schools. Fall 1991. Callorna. Fall 1990 Council of Chief State Schoor Officers. State Education Assessment Center Washington. DC. 1993
less on new graduates and hiring more experienced teachers from the "reserve pool." In 1988, only 26 percent of new hires were first-year teachers (Rollefson, 1991).

However, the national averages do not identify shortages at state and local levels or shortages in specific teaching fields. The Council's 1990 sciencemathematics indicators revealed a shortage of chemistry and physics teachers in at least 11 states, and shortages of mathematics teachers in states with high population growth and many small, rural districts (Blank \& Dalkilic, 1991).

Teacher Supply in 1992

A starting point for assessing the current supply of science and mathen atics teachers is the total number of teachers in each state by teaching field, or teaching, "assignment." For the 1992 science-mathematics indicators, states reported the total number of high school teachers and middle grades teachers in mathematics and science and the number of teachers by "main assignment" (50 percent or more of teaching periods/classes) and "other assignment" (less than 50 percent of teaching periods/classes).

High School Teachers

Table 17 shows the total numbers of high school teachers by state in mathematics, biology, chemistry,

TABLE 17
NUMBER OF MATHEMATICS AND SCIENCE TEACHERS IN GRADES 9-12 (1991-1992)

State	(
	$\begin{gathered} \text { Math } \\ \text { Teachers } \end{gathered}$	Biology Teachers	Chemistry Teachers	Physles	Sclence Teachers
Alabama	1,608	826	378	286	21
Alaska	-	-	-		
Arizona	1,050	934 *			
Arkansas	709 **	629	306	238	64
Calitornia	9,837	3.887	1,365	922	550
Colorado	1,275	1.131*	-	-	
Connecticut	1,545	679	375	263	257
Delaware	192 *	51^{*}	16 *	30 **	8 *
Dist. of Coilumbia				-	
Florida	8.880	2.427	691	401	1.323
Georgia			5	-	
Hawaii	578	194	59	44	92
Idaho	747	253	131	91	148
Illinois	3.799	1.369	687	321	204
Indiana	2,270	1.015	507	366	287
lowa	1.534	746	426	389	225
Kansas	1.224	632	391	274	98
Kentucky	1,568	716	344	219	51
L.ouisiana					
Maine	825	363	211	177	162
Maryland	-	-	-	-	
Massachusetts	3,329 *	741	441	261	309
Michigan	3.380	863	438	261	130
Minnesota	1.787	741	501	375	111
Mississippi	1,142	792	548	197	7
Missouri	2,029	1.038	588	378	162
Montana	506	251	167	134	175
Nebraska			77	-	1
Nevada	474	211	77	50	91
New Hampshire	471	181	67	37	26
New Jersey	3,677	922	448	163	327
New Mexico	716	313	143	98	41
New York	7.555	5.047	1.835	1.089	2,831
North Carolina	3,318	1.368	571	351	328
North Dakoia	468	261	176	124	8
Ohio	4,210	1,797	1.014	748	410
Oklahoma	1.701	914	463	243	65
Oregon	1.207	362	-	-	
Pennsylvania	6.443 *	1.939	1,065	693	778
Puerto Rico	1,582	414	231	119	94
Rhode Island	413	153	88	52	10
South Carolina	1.845	664	346	232	2
South Dakota	467	228	155	123	28
Tennessee	1,892	697	362	237	71
Texas	10,612	4,367	1.682	1,043	334
Utah	1,243	456	124	80	344
Vermont	278	127	80	73	77
Virginia			-	-	-
Washington	-	-	-	$\overline{-}$	$\overline{-}$
West Virginia	1019	381	162	108	283
Wisconsin	275				63
Wyoming	275	147	88	,1	63
nation	116,849	46,864	21,277	13,610	12,273

[^15]physics, and earth science. The 1992 totals for teachers in science and mathematics can be compared with the totals in 1990, to obtain an indication of change (see state data by assignment in Appendix Tables B-1 through B-6).

NUMBER OF HIGH SCHOOL TEACHERS ASSIGNED TO MATHEMATICS AND SCIENCE: 1990 TO 1992

	1992	1990	Change
Mathematics	116,850	109,500	$+7,350$
Biology	46,900	46,300	+600
Chemistry	21,300	21,200	+100
Physics	13,600	14,100	-500
Earth Science	12,300	13,400	$-1,100$

The enrollment figures for high school mathematics (see Table 4) show that the total student enrollment increased by 3 percent from 1990 to 1992. The total number of teachers in mathematics has increased by over 7,300 , or 7 percert:. In science, the total enrollments have increased by 3 percent, with most of the increase in advanced/second-year biology and chemistry. The total number of teachers in biology increased by 600 , or 1.3 percent; and chemistry teachers increased by 100 , or 0.5 percent. The number of teachers assigned to physics declined by 500 , or 3 percent; and the number of teachers in earth science declined by 1,100 , or 8 percent. Some physics and earth science teachers may have been reassigned to biology or chemistry. Also, a total of 800 teachers were assigned to "integrated science" in 11 states.

Student/Teacher Ratios

Another measure of teacher supply is the student/teacher ratio, as shown in Table 18. The student/teachers ratio is based on the total state student membership and the estimated teacher time assigned to a subject. It provides a standardized statistic for comparing states on the supply of teachers for each subject area; and it also provides an indicator of the opportunity for students in each state to study mathematics and science, particularly in advanced fields. ${ }^{10}$

The average number of high school stadents as compared to current teachers are:

- 149 students per mathematics teacher.
- 217 students per biology teacher,
- 447 students per chemistry teacher, and
- 971 students per physics teacher.

These national ratios indicate widely differing opportunities to take mathematics and science. If we assume 5 classes per teacher (and current staffing levels), all students could take mathematics in a class of

[^16]TABLE 18
MATHEMATICS AND SCIENCE STUDENT/TEACHER RATIO IN GRADES 9-12

State Stur	Students/Math Teacher (Grades 9-12)	Students/Blology Teacher (Grades 9-10)	Students/Chemlstry Teacher (Grades 11-12)	Students/Physlcs Teacher (Grades 11-12)
Alabama	192	292	720	1143
Alaska	-	-	-	-
Arizona	164	$185 *$	-	-
Arkansas	135	180	376	813
California	180	287	658	1431
Colorado	132	149 *	-	-
Connecticut	95	138	226	426
Delaware	122	215	447	384
Dist. of Columbia	-	-	-	-
Florida	73	173	447	879
Georgia	-	-	-	-
Hawaii	105	188	455	736
Idaho	159	229	444	965
Illinois	131	201	323	697
Indiana	138	181	314	710
lowa	-	-	-	-
Kansas	-	-	-	-
Kentucky	126	179	325	1032
Louisiana	-	-	-	-
Maine	-	-	-	-
Maryland	-	-	-	-
Massachusetts	105	163	247	418
Michigan	132	295	53 b	1127
Minnesota	148	200	373	636
Mississippi	128	121	183	865
Missouri	128	164	308	751
Monlana	100	156	240	435
Nebraska	-	-	-	-
Nevada	149	203	466	1059
New Hampshire	-	-	-	-
New Jersey	84	176	330	924
New Mexico	127	197	444	977
New York	119	108	227	439
North Carolina	111	173	327	994
North Dakota	97	141	241	451
Ohio	140	198	328	692
Oklahoma	98	124	317	863
Oregon	127	243	-	-
Pennsylvania	116	145	234	412
Puerto Rico	139	238	346	734
Rhodg Island	93	148	226	376
South Carotina	103	195	293	809
South Dakota	98	142	255	419
Tennessee	145	245	388	i184
Texas	104	171	352	879
Utah	136	198	647	1427
Vermont	102	125	209	253
Virginia	-	-	-	-
Washington	-	-	-	-
West Virginia	95	152	352	1024
Wisconsin	-	-	-	-
Wyoming	115	123	200	265
SUM (39 slates)) 149	217	447	971

Nole Studentheacher ralio = student membership divided by ieacher time assigned to subject (number of man assignment leachers + 25 times number with olher assignment)

- Arizona. Colorado = All science for students 9-12 - Dala not avaıable

Source Stale Departments of Education, Dala on Public Schools. Fall 1991. Calilornia. Fali 1990 NCES CCD Fall Membership 1991.
Council ol Chiel State School Olicers. Stale Education Assessment Center. Washrigion. OC. 1993

TABLE 19
number of mathematics and science teachers in grades 7-8

STATE	$\begin{aligned} & \text { Math } \\ & \text { Teachers } \end{aligned}$	Students/Math Teacher (Grades 7-8)	Science Teachers	Students/Sclence Teacher (Grades 7-8)
Alabama	1,359	127	1,261	138
Alaska	-	-	-	-
Arizona	-	-	-	-
Arkansas	-	-	-	-
California	6,908	154	4.821	201
Colorado	1,032	103	974	109
Connecticut	937	92	782	99
Delaware	123	-	122	-
Dist. of Columbia	-	-	-	$\bar{\square}$
Florida	3,029	135	6,119	62
Georgia	-	-	-	-
Hawaii	360	96	221	162
ldaho	405	144	325	168
Illinois	1,166	229	1,072	249
Indiana	1,601	113	1,470	122
lowa	-	-	-	-
Kansas	628	-	652	-
Kentucky	1,189	110	980	126
Louisiana	-	-	-	-
Maine	425	-	368	-
Maryland	-	-	-	-
Massachuselts	-	-	-	-
Michigan	1,953	134	1,767	147
Minnesoia	963	172	843	188
Mississippi	1,038	99	832	124
Missouri	1,294	125	1,289	126
Montana	401	105	381	105
Nebraska	-	-	-	-
Nevada	300	118	198	193
New Hampshire	89	-	--	-
New Jersey	2,322	89	1,237	143
New Mexico	483	119	456	118
New York	6,092	92	5,382	90
North Carolina	2,774	97	2,173	113
North Dakota	459	87	392	100
Ohio	2.634	129	2,220	145
Oklahoma	922	123	850	135
Oregon	645	145	476	178
Pennsylvania	-	-	-	$\overline{-1}$
Puerto Rico	1,412	92	748	162
Rhode Island	232	90	217	97
South Carolina	1,637	93	1,168	127
South Dakota	319	106	298	112
Tennessee	-	-	-	-
Texas	6.421	114	5.742	120
Utah	272	316	217	426
Vermont	-	-	-	-
Virginia	--	-	-	-
Washinglon	--	-	-	$\overline{180}$
West Virginia	461	112	276	189
Wisconsin	-	$\overline{7}$	$\overline{19}$	$\bar{\square}$
Wyoming	231	79	199	92
SUM (36 states)	52,516	166	46,528	177

[^17]30 students, while only 1 in 7 students could take physics. The student/teacher ratios also differ widely by state.

The students/mathematics teacher ratio shows that 13 states reported more than 135 students per teacher in mathematics with Alabama the highest at 192 students per teacher, and California next at 180 students per teacher, whereas 8 states have less than 100 students per teacher. This ratio means if all grade 9-12 students in Alabama were taking mathematics at one time, the average teacher would be teaching 192 students. The states with high ratios are likely to have less flexibility to respond to increased student interest in mathematics.

In chemistry, four states have more than 500 students per teacher (Alabama, California, Michigan, and Utah), and 8 states have more than 1,000 students per physics teacher. States with very high ratios of students per science teacher would have great difficulty in increasing instruction in chemistry and physics.

Grades 7-8 Teachers

The total numbers of science and mathematics teachers in grades $7-8$ by state are shown in Table 19. Some states have all teachers at these grades assigned by subject area only; other states have many teachers with a general assignment that may include science or mathematics in middle schools or self-contained classes. The data on general grade 7-8 assignments are incomplete for many of the states. In 35 reporting states, there are 52,500 mathematics teachers and 46,500 science teachers in grades $7-8$. If we use statistical imputation for nonreporting states, we can estimate the national total as 63,100 mathematics and 55,600 science teachers in grades 7-8.

The student/teacher ratios are also reported in Table 19. Most states have mathematics ratios of 70 to 120 students per teacher. Two states have more than 200 students per teacher assigned in mathematics, which probably means that most maithematics teaching is done by teachers with .us assignment and certification in elementary or general secondary education. Eleven states report fewer than 100 students per mathematics teacher. The student/science teacher ratios are slightly higher across the states, with 3 states reporting more than 200 students per science teacher and 5 states reporting fewer than 100 students per teacher.

Main us. Other Assignments

Figure 6 shows the proportion of all high school teachers in mathematics and four science ficldsteachers who teach a majority of time in that field ("main assignment"). Nationally, 8 of 10 teachers of mathematics have their main assignment in mathematics, and 2 of 10 teach less than half time in mathematics. In the teaching fields of physics and earth
science, a far smaller proportion of teachers are assigned a majority of their teaching time to these fields- 3 of 10 physics teachers and 5 of 10 teachers of earth science.

Figure 6 also illustrates the proportion of science and mathematics teachers in grades 7 and 8 that teach a majority of time in the subject (main assignment). The percentages show that 7 of 10 middle grades science teachers primarily teach science, and 6.5 of 10 mathematics teachers at this level primarily teach mathematics. One-third of mathematics teaching is done by teachers from other disciplines. Fifteen states reported data on grade $7-8$ teachers with a general elementary or middle school assignment, who teach mathematics or science. In Colorado, Illinois, Kansas, Ohio, and Oregon, teachers with a general assignment teach a third or more of the mathematics and science in grades 7 and 8 (see Appendix Table B6).

State-by-state data on teaching assignments (sce Appendix Tables B-1 through B-6) show that states vary widely in the proportion of teachers with their main assignment in science and mathematics. For example, states with over 90 percent of their high school mathematics teachers spending a majority of time teaching mathematics are Arizona, Colorado, Illinois, Michigan, New Jersey, Oklahoma, Pennsylvania, Rhode Island, and West Virginia. At the other extreme, one-third or more of high school mathematics teaching is done by teachers from other disciplines in California, Hawaii, Idaho, North Dakota, Puerto Rico, South Dakota, and Utahteachers who have their main assignment in another subject.

Higher numbers of teachers with "other assignments" in mathematics and science may be due to population growth (such as in California), as well as increases in state course requirements. In science, states with more small, rural districts, such as Arkansas, Oklahoma, and North Dakota, have fewer teachers with primary assignments in any of the science fields; and states with a greater proportion of urban and suburban districts, such as Comnecticut, New York, and Pennsylvania, have more teachers with primary assignments in the science fields.

Age of Science and Mathematics Teachers

ln 1990, the states reported data on the age distribution of science and mathematics teachers. These data were not repeated in the 1992 data report from states, but data collection will be repeated in the 1993-94 school ycar.

Data on the age of science and mathematics teachers provide useful information for estimating possible shortage fields as teachers near retirement age. Figure 7 shows summary statistics from the state aggregate data on teacher age by field. Illustrated are the proportion of teachers aged 50 and over and under age

Source State Departments of Educaton. Data on Public Schools. Fall 1989. N. Carolina. Fall 1988
Council of Chiel State Schnol Olficers. Slate Education Assessment Center. Washington. DC. 1993.

30 in the 36 reporting states. The proportion of teachers over age 50 varies by teaching field from 19 percent of mathematics teachers to 23 percent of physics teachers. The proportion under 30 varies from 13 percent in mathematics and chemistry to 12 percent in biology and 11 percent in physics. The proportion of science and mathematics teachers reaching retirement age varies little from the average of 21 percent over 50 among all high school teachers.

The age distributions of mathematics and science teachers do vary widely by state in all fields. Table 20 shows that shortages of science and mathematics teachers can be anticipated in a few states with much percentages of their teaching force over age 50 , including Minnesota, Delaware, California, Michigan, and Wisconsin. States with numbers of reachers over age 50 significantly below the average are Alabama, Kentucky, North Dakota, Ohio, Oklahoma, and South Carolina. According to NCES projections, attrition rates from elementary and secondary teaching will be rising to almost 10 percent per year after 1995 because of increasing retirement (NCES, 1989). States that have flat or declining populations over the past two decades, particularly northeastern and midwestern states, have higher proportions of older science and mathematics teachers. Many of the teachers over 50 years of age in these states were hired in the 1960s when school enrollments were increasing.

TABLE 20
PERCENTAGE OF MATHEMATICS AND SCIENCE TEACHERS OVER AGE 50: HIGH AND LOW STATES

High Slates	Math	Siology	Chemistry	Physlcs
California	26%	21%	23%	22%
Connecticut	20	24	27	29
Delaware	28	23	41	29
Illinois	23	28	30	32
Michigan	24	26	33	29
Minnesota	29	30	45	43
Low States				
Alabama	13%	12%	15%	18%
Kentucky	10	14	13	12
North Dakota	13	16	13	16
Ohio	13	16	15	14
Oklahoma	11	9	13	18
South Carolina	13	13	17	17
NATION	$\mathbf{1 9} \%$	$\mathbf{2 0} \%$	$\mathbf{2 2} \%$	$\mathbf{2 3} \%$

[^18]
INDICATORS OF EQUITY IN THE TEACHING FORCE

For the 1990 Council report, states reported data on two indicators of equity among current teachers in science and mathematics: gender and race/ethnicity. The distribution of science and mathematics teachers by gender and race/ethnicity provides a basis for states and the nation to compare the characteristics of the current teaching force with goals of improving the match between students and teachers in terms of gender and race/ethnic characteristics.

National survey data show that minority science and mathematics teachers and female science teachers are vastly under represented considering the student population in our schools (Weiss, 1987). Oakes' analysis of teacher characteristics and student participation and opportunities in science and mathematics demonstrated that the rate of participation of minority and female students in science and mathematics is related to the characteristics of their teachers (Oakes, 1990a).

Gender of Science and Mathematics Teachers

Figure 8 provides national summary statistics on the gender of high school science and mathematics teachers in four fields as of 1990 , based on data from 40 states. The percentage of female teachers differs by subject: 45 percent in mathematics, 37 in biology, 34 in chemistry, and 22 in physics. By comparison, 50 percent of all high school teachers are female.

State-by-state statistics on the gender of mathematics and science teachers show that the distributions vary widely. For example, in mathematics, Figure 9 shows that the percentage of female teachers varies from 21 percent in Minnesota to 69 percent in both North and South Carolina.

Figure 9 also indicates that in biology the percentage of females varies from 16 percent in Montana and Wisconsin to 63 percent in Alabama. The percentages of female mathematics and science teachers by state shows that geographic region is associated with the gender of science and mathematics teachers. Thirteen states have more female than male mathematics teachers, and eight of these states are in the Southeast. Six states have more female mathematics teachers than female high school teachers in general: Alabama, Kentucky, Mississippi, New Jersey, North Carolina, South Carolina, and Virginia. States in the Southeast have the highest proportion of female high school science and mathematics teachers, and states in the Midwest have the lowest proportion.

New Teachers in Science and Mathematics

A second indicator of equity in teacher supply is the number of new, first-year teachers entering science and mathematics teaching in each state.

Table 21 provides a state-by-state comparison of the proportion of new mathematics and science

Figure 8
gender of mathematics and science teachers
(40 STATES)

Source Slate Departments of Education. Data on Public Schools. Fall 1989. N Carolina. Fall 1988
Counci of Chiel Slate School Olficers. State Education Assessment Center. Washington. DC. 1993
teachers in their first year of teaching. The data on mathematics teachers show that:

- Five states have more than 6 percent new firstyear mathematics teachers (Arkansas, 17; Idaho, 10; Mississippi, 37; Montana, 9; and New Mexico, 7 percent).
- Amo g the reporting states, 5 percent of all mathematics teachers were new, first-year teachers in 1991-92.
- Three states have more than 5 percent new, firstyear science teachers (Idaho, 6; Delaware, 12; and Mississippi, 31 percent). Four percent of all high school science teachers were new to teaching in 1991-92.
- About 7 percent of all mathematics and science teachers were new hires (new to current district).
- The data show that over one-third of the teachers hired in mathematics and science werc experienced teachers who either transferred from another district or state, or returned to teaching. The states with over half of new hires in 1991-92 being experienced teachers were: California, Delaware, Minnesota, New Mexico, North Dakota, Oklahoma, Oregon, South Dakota, and Texas.

New Minority and Female Teachers

In 1991-92, the states reported the numbers of new teachers by gender and race/ethnicity. These data provide a current update on the degree of suc-

FIGURE 9
PERCENTAGE OF FEMALE TEACHERS IN MATHEMATICS AND BIOLOGY

Source State Departments ol Education. Data on Public Schools. Fall 1989. N Caroina Fall 1988
Council or Chuet State Schoor Oliticers. State Edication Assessment Center. Washington. OC. 1993
cess that schools are having in each state in recruiting and hiring more minority and female science and mathematics teachers. The summary statistics are as follows.

CHANGE IN COMPOSITION OF

 SCIENCE AND MATHEMATICS TEACHING (1991-92)| | Percent Minotity | Percent Fomale |
| :---: | :---: | :---: |
| All Mathematics leachers | 11 | 45 |
| New. First-Year | | |
| Mathematics teachers | 14 | 55 |
| All Science teachers | 8 | 34 |
| New, First-Year Science leachers | 12 | 52 |

The data show that the percentage of new minority teachers in mathematics (14 percent) and science (12 percent) is slightly greater than the current representation of minorities in the teaching force in high schools (11 percent mathematics, 8 percent science). More than half of new science and mathematics teachers are female, and the percentages are significantly highet than the current representation of female teachers. These data on new teachers are consistent with national data from NSF surveys of college graduates which show a recent trend of only
small increases in the number of minority graduates in science, mathematics, and engineering, but larger increases in the numbers of female graduates in these fields (National Science Board, 1991).

State-by-state data on new minority and female teachers are shown in Appendix Table B-17. The state figures show that nine states have a larger proportion of new minority mathematics teachers than the current representation of minority teachers (California, Connecticut, Michigan, New Jersey, North Dakota, Pennsylvania, Rhode Island. Texas, Utah). Nine states also have a larger proportion of minority science teachers than the current representation (California, Connecticut, Delaware, Kentucky, New Mexico, Pennsylvania, Khode Island, Texas, Utah).

Race/Ethnicity of Science and Mathematics Teachers

A third indicator of equity in the science and mathematics teaching force is the race/ethnicity of current teachers. In 1990, stare data on the race/ethnicity of science and mathematics teachers (grades 912) showed the following percentages of white and minority teachers in 33 reporting states (with percent minority teachers equal to the sum of four race/ethnic groups: African American, Hispanic, Asian American, and American Indian/Pacific Islander).

Table 22 shows that the states with the kighest proportions of minority teachers in science and mathematics (over 15 percent) are in the Southeast states and Hawaii. There is relatively little variation among mathematics, biology, and chemistry in the percentage of minority teachers, although chemistry and physics have slightly fewer minorities in most states.

Table 22 also provides state-by-state comparisons of the proportion of minority high school science and mathematics teachers with the proportion of minority students. Among the 33 states that reported teacher race/ethnicity by field, only 11 states had over 10 percent minority teachers in any of the three fields. Of the 20 states with more than 20 percent minority students, only 5 states have even half as many minority teachers in mathematics, biology, or chemistry as the proportion of minority students (Virginia, Alabama, South Carolina, Mississippi, Hawaii).

New Teachers in Large Cities

The five states that reported data for the pilot study of science and mathematics in large cities also reported on the number of new teachers in Appendix Table B-7. The data show that large city school districts have about the same percentage of new, firstyear teachers as their states as a whole. California has 5 percent new, first-year mathematics and science teachers, and the 11 large cittes have about the same percentages. Ohio and Texas have fewer new teachers in large city schools than the state average. New York had slightly more new mathematics teachers in 3 large cities, but both percentages are small (2 vs .1 percent).

Three of the four states had fewer new hires in large cities than the state as a whole. For example,

TABLE 21
NEW HIGH SCHOOL TEACHERS IN SCIENCE AND MATH (1991-92)

STATE	\% New of All Math	$\begin{aligned} & \text { \% New } \\ & \text { of All } \\ & \text { Science } \end{aligned}$	\% Newly Hirad Math	\% Newiy Hlred Science
Alabama	4%	3%	7 \%	5%
Alaska	-	-	--	-
Arizona	-	-	-	-
Arkansas	17	3	17	3
California	5	4	10	7
Colorado	4	5	7	8
Connecticut	1	1	-	-
Delaware	8	12	23	18
Dist. of Columbia	-	-	-	-
Florida	5	5	5	5
Georgia	-	-	-	-
Hawaii	6	3	10	4
Idaho	10	6	14	9
Illinois	3	4	6	6
Indiana	2	2	-	-
lowa	3	2	4	4
Kansas	4	4	6	5
Kentucky	6	3	9	5
Louisiana	-	-	-	-
Maine	2	1	-	\cdots
Maryland	-	-	-	-
Massachusetts	-	-	-	-
Michigan	6	3	3	2
Minnesota	3	3	7	7
Mississippi	37	31	-	-
Missouri	5	4	9	7
Montana	9	5	-	-
Nebraska	-	-	-	--
Nevada	5	5	7	6
New Hampshire	--	-	-	-
New Jersey	2	2	3	5
New Mexico	7	4	15	10
New York	1	1	4	4
North Carolina	5	5	10	8
North Dakota	5	3	12	10
Ohio	3	2	6	4
Oklahorna	5	4	13	10
Oregon	4	3	9	6
Pennsylvania	2	1	2	2
Puerto Rico		4	4	4
Rhode Island	3	1	-	-
South Caroina	4	3	8	,
South Dakota	4	4	11	11
Tennessee	-	-	-	-
Texas		5	14	11
Utah	1	1	1	1
Vermont	2	3	4	3
Virginia	-	-	-	-
Washington	-	-	-	-
West Virginia	-	-	-	-
Wisconsin	-	-	-	-
Wyoming	8	3	13	7
SUM (38 states)	5%	4 \%	7%	7%

[^19]TABLE 22
MINORITY TEACHERS IN MATHEMATICS AND SCIENCE BY MINORITY STUDENTS IN STATE

State	$\begin{gathered} \text { \% Minority } \\ \text { Students (K-12) } \end{gathered}$	Math	Biology	\% Minority Teachers (9-12) Chemistr;	Physics	All High Scnool
Maine	3%	. $\%$	0 \%	0%	0%	. $\%$
Idaho	8	2	1	0	1	2
lowa	8	4	0	1	1	1
Utah	8	2	2	1	1	3
North Dakota	9	2	1	1	0	2
Kenlucky	10	2	3	1	1	4
Montana	12	1	1	0	0	2
Kansas	14	3	2	4	3	4
Indiana	14	3	3	2	. 3	4
Wisconsin	15	2	2	1	1	2
Ohio	16	3	5	2	1	6
Pennsyivania	17	3	3	1	. 4	3
Rhode Island	17	2	2	5	0	6
Michigan	22	7	3	1	1	8
Connecticut	23	3	3	2	2	5
Colorado	25	5	6	-	-	7
Nevada	26	9	7	3	0	10
Arkansas	27	10	10	6	4	10
Oklahoma	28	5	5	4	1	6
Delaware	30	8	4	0	10	11
North Carolina	32	14	16	11	6	16
Virginia	32	13	14	10	10	15
New Jersey	32	10	7	5	3	10
Illinois	35	11	12	7	4	12
Maryland	38	17	16	-	-	-
Arizona	39	6	5	-	-	10
Alabama	41	18	19	17	15	21
South Carolina	43	22	21	17	15	20
Texas	48	18	17	11	8	19
Mississippi	48	25	30	27	24	31
California	53	18	16	12	9	18
New Mexico	58	20	19	19	15	25
Hawaii	76	71	61	67	59	78
SUM (33 states)	31 \%	11%	10%	7 \%	4%	11 \%

Note Percent mimonty teachers = Assan, Pacilic istander. Black. Hispanc, and American Indian Number ol leachers in each saceiethnc group
avariable in Blank \& Dalkitic. 1990 Minority leachers reported under Biology tor Colorado. Antiona Maryliand - All science herds
Sources (Teachers) State Departments ol Education, Fall 1989. (Sludents) NCES. Schools and Statling Survey Washmgton. DC. U S Depatment ol Educalior Spring 1991
Council ol Chiet State School Oilicers. State Education Assessment Center. Washington. DC. 1993

California large cities had 8 percent new mathematics hires, as compared to the state average of 10 percent. Texas' large cities had about half the percentage of new hires as state as a whole. The data on new hires in large cities versus state averages confirm the verbal reports of administrators in urban districts on the difficulty of attracting and hiring science and mathematics teachers. A larger portion of new hires in large cities are first-year teachers. Part of the prohlem may be due to large city districts having restricted budgets that limit their ability to attract more highly paid, experienced teachers; and it is likely that many experienced teachers are not interested in transferring to large urban school systems.

TEACHER PREPARATION IN SCIENCE AND MATHEMATICS

The Council's priority indicators of science and mathematics education focus on three indicators of teacher preparation: (1) the proportion of teachers with state certification in the assigned teaching field, (2) the percentage of teachers with a major in their assigned teaching field, and (3) the average number of college courses that teachers have completed in science and mathematics.

Centification in Teaching Field

State certification in the assigned teaching field indicates that teachers have a basic level of preparation in the subject. Using state personnel files and teacher assignment data, states reported, for example, the percentage of high school biology teachers that are certified in biology. Additionally, the data were disaggregated by teachers who spend a majority of their time teaching biology (main assignment), and those teaching biology as a secondary or third assignment (other assignment). Often, policymakers and educators are interested in the percentage of teachers who are not state certified (i.e., the percentage of "out-of-field" teachers). The proportion of teachers who are certified in the fields in which they are teaching is an important policy indicator for state and local educators because state certification is often used as a basic measure of teacher qualification and as an indicator of teacher supply and shortage (Murnane \& Raizen, 1988). It is not an adequate measure of quality of teacher preparation, particularly in cross-state comparisons, because of the differing state standards for certification.

For the 1992 science-mathematics indicators, 32 states reported the numbers of teachers certified, or not certified, in their assigned teaching fields. The data are supported by states in Tables 23 (grades 912). As shown in Figure 10, among the high school teachers in the reporting states, 12 percent of mathematics teachers were not state certified in mathematics, 9 percent of biology teachers were not certified, 8 percent of chemistry teachers, 13 percent of physics teachers, and 19 percent of earth science teachers. Among the teachers in grades $7-8,10$ percent of mathematics teachers were not certified in mathematics, and 11 percent of science teachers were not certified in science. In addition, 26 percent of grade 7-8 mathematics teachers and 19 percent of science teachers were certified in general elementary, middle grades, or secondary teaching.

The total percentage of teachers certified and not certified can be disaggregated by main assignments versus other assignment by subject.

FIGURE 10
PERCENTAGE OF HIGH SCHOOL MATHEMATICS AND SCIENCE teachers not state certified

Source Slate Departments of Education. Data on Pubhc Schools, Fall 1991, California. Fall 1990 Council ol Chiel State School Ollicers. State Education Assessinent Center. Washinglon. DC. 1993

CERTIFICATION OF HIGH SCHOOL MATHEMATICS AND SCIENCE TEACHERS BY ASSIGNMENT

Main Assignment			Other Assignment	
	tified	ertifie	\% Certified	\% Not Certified
Mathematics	73	6	14	6
Biology	63	4	28	5
Chemistry	56	3	36	5
Physics	33	3	54	10
Earth Science	48	6	32	14

The summary figures show that in the sciences a majority of teachers that are not state certified are assigned to the subject as an "other" (or second) assignment. In high school mathematics, one-half of the 12 percent of teachers not certified have mathematics as their main assignment (6 percent) and onehalf teach mathematics as an other assignment. In physics, over two-thirds of teachers are assigned on a part-time basis, and 1 of 6 of these teachers are not certified in physics.

tYpe of Certification of science teachers

	\% Cerifiled Spocific Field	$\%$ Cerilfiled Broad-Field	$\%$ Not State Cortified
Biology	72	19	9
Chemistry	66	26	8
Physics	56	31	13
Earth Science	53	27	20

Two-thirds of the states certify secondary science teachers through "broad field" certification, as well

STATE	Math: \% Not Certified	Biology: \% Not Certified	Chemistry: \% Not Certilied	Physics: \% Not Certified	Earth Sclence: \% Not Certified
Alabama	4 \%	2 \%	6%	19%	10 \%
Arkarisas	1	2	7	11	9
California	20	18	17	17	12
Connecticul	2	3	2	12	24
Colorado	25	7	-	-	-
Delaware	6	6	0	7	0
Florida	29	19	3	3	28
Idaho	4	4	18	40	11
Illinois	21	22	17	17	8
indiana	4	4	6	15	35
Kentucky	1	2	2	16	55
Minnesola	2	2	12	11	23
Misssissippi	10	20	25	50	14
Missouri	1	4	7	26	35
Montana	1	4	1	4	5
Nevada	5	1	0	4	8
New Mexico	4	3	0	1	2
New York	8	8	7	16	23
North Carolina	7	3	. 2	8	8
North Dakota	0	0	0	0	0
Ohio	10	4	2	3	5
Okiahoma	5	3	4	10	29
Oregon	14	4	-	-	-
Pennsylvania	13	9	9	11	8
Puerto Rico	10	1	1	6	5
Rhode Island	0	0	0	0	0
South Carolina	8	8	6	8	50
South Dakota	1	1	2	7	0
Utah	12	13	13	18	36
Vermont	3	-	-	-	-
West Virginia	5	6	10	12	3
Wyoming	8	4	6	7	3
SUM (32 states)	12 \%	9%		13 \%	19%

Note is Not Certhed = Teachers assigned 1 or more periodiclass to subject with no state corthication in subject Colorado Biotogy =All science. - Data not avalable Source State Departmerts of Education. Data on Pubhc Schools. Falt 1991. Catfomia. Fall 1990
Councii of Chet State Schoo! Officers. State Education Assessment Center. Washington. DC 1393
as in specific fields of biology, chemistry, and so forth. (See Appendix Tables B-8 and B-9 for state certification requirements.) The summary data from states show that almost one-third of science teachers in the reporting states were certified through a broad field certification. About the same proportion of teachers had broad-field certification among teachers with their main assignment in science as among teachers with an other assignment in science. Many schools must hire teachers to teach two or three science subjects, and they tend to hire teachers who have received state certification through a broad-field (or nonspecialist) method of science certification.

In Table 23, the state percentages of noncertified teachers vary widely. States with high percentages of noncertified mathematics teachers are California (20 percent), Colorado (25 percent), Florida (29 percent), Illinois (21 percent), and Pennsylvania (13 percent). States with high nercentages of noncertified chemistry teachers are California (17 percent), Idaho (18
percent), Illinois (17 percent), Mississippi (25 percent), and Utah (13 percent). In phy'sics, Alabama (19 percent), Kentucky (16 percent), Missouri (26 percent), New York (16 percent), Oklahoma (10 percent), and West Virginia (12 percent) have shortages of certified teachers; and the states with a shortage of certified chemistry teachers also tend to have physics shortages (e.g., California, Illinois, Mississippi, and Utah). Appendix Tahles B-10 and B-11 show state data on certification of teachers in grades 7-8.

State Requirements by Rate of Noncertification

States have different requirements for teacher certification and one possible reason for differing rates of noncertified teachers is differences in the level of state requirements for certification. (See Appendix Tables B-8 and B-9 for state requirements.) For example, a question that can be examined is whether states requiring more subject area course credits have higher rates of noncertified teachers. Among the 5
states with high noncertified mathematics teachers, Florida requires 21 credits; Illinois requires 24 credits; and California, Colorado, and Pennsylvania requirements are set by higher education institutions (with state approval of programs). The average state requires 27 credits in mathematics, and 14 states certify through institutions of higher education. Among the 5 states with high rates of noncertified teachers in chemistry, Mississippi requirements are set by institutions of higher education, Idaho requires 20 credits, Hlinois requires 24 credits, and Utah requires 45 quarter credits. The average among states is 30 credits. These requirement levels indicate that among states that currently have a shortage of certified teachers in high school mathematics and science, there is no pattern of higher than average requirements.

Do states with few noncertified teachers have lower, less stringent requirements? Among five states reporting 0 to 1 percent noncertified in mathematics, Kentucky requires 30 mathematics credits, Missouri 30 credits, Montana 30 credits, Rhode Island 30 credits, South Dakota 18 credits, and North Dakota requirements are set by higher education institutions. Thus, these states do not have less stringent requirements for mathematics certification than other states, and a similar pattern holds in the sciences.

Some states have a policy of recognizing a teacher's "endorsement" to teach courses in a subject that is not their main assignment. The "endorsement" is based on completing a minimum number of credits in a field (often the equivalent of a college minor) to teach courses in the field, and these teachers are typically counted as "certified." This policy" reduces the number of noncertified reachers in several states, including Alabama, Maryland, and South Dakota.

Important factors in the rate of noncertified teachers in mathematics and science are related to state demographics. For example, two states with high population growth, California and Florida, have many noncertified mathematics teachers and science teachers. Oakes (1990b) research on equity in science and mathematics shows that schools in inner cities and schools with a high percent minority students have significantly more noncertified teachers (see Figure 12).

Pennsylvania, Illinois, and California have a high percentage of enrollments in schools in large cities that have these characteristics, and these factors raise the state proportion of noncertified teachers. A third factor affecting state noncertified teachers is the number of small rural districts and high schools in the state. Highly rural states, such as Oklahoma, Mississippi, and Utah, experience problems in hiring certified science teachers due to the many small high schools.

Source State Departments of Education. Data on Pubuc Schools Fall 1991 Califorma Fall 1990 Council al 'huet State School Officers Slate Educaton Assessment Center. Washington DC. 1993

Students Taught by Noncertified Teachers

The percentage of noncertified teachers in a state may not accurately reflect the extent to which mathematics instruction is being provided by poorly prepared teachers. A statistic that gives a clearer picture of the size of the problem is the percentage of students taught by noncertified ieachers. Figure 11 compares the percentage of noncertified teachers with the percentage of students affected by these teachers. Fourteen states were able to report this level of detail from their state data systems. In sum, 8 percent of high school students are taught by noncertified mathematics teachers as compared to 12 percent of teachers who are not certified in mathematics. Thus, the number of noncertified teachers overrepresents the number of students exposed to these teachers by onethird. California's 20 percent of noncertified teachers in mathematics instruct 1.3 percent of the students in mathematics (still a large number of students). The 8 percent of noncertified teachers in New York teach 5 percent of the students, and the 10 percent noncertified in Ohio teach 6 percent of the students.

Certified/Noncertified Teachers in Large Cities

The 1992 pilot study of science and mathematics

Source Oakes J. Multhplying Inequatites. The Effects of Race. Social Class. and Fracking on Opportunties to Learn Mathemalics and Scuence Rana Corp. Santa Monica. CA. 1990 p 61
Couns,t ol Chief State Schoor Officers State Education Assessment Center. Washington. OC. 1993
indicators for large cities provides data for three states to compare the proportion of certified teachers in large city schools and state averages. Appendix Table B-18 shows that California has about 10 percent more noncertified mathematics and science teachers in large cities than the state as a whole. New

York and Ohio also have more noncertified teachers in their large city districts. In these three states the data show it is more difficult to hire and retain certified mathematics and science teachers in large cities.

College Major in Assigned Teaching Field

A second indicator of teacher preparation in science or mathematics is the percentage of teachers that hold a degree in their assigned field. This indicator sets a higher standard for preparation in science or mathematics than state certification. A teacher's academic knowledge, as measured by the amount of coursework preparation, has been found to be related to student learning, particularly in science and mathematics (Shavelson et al., 1989). Monk's (1993) new analysis of the Longitudinal Study of American Youth, which follows the academic progress of a national sample of students, shows that each additional mathematics course taken by mathematics teachers above the minimum translates into 2 to 4 percent higher student achievement scores (up to 5 additional courses). The National Education Goals Panel uses the percentage of teachers in science and mathematics with an undergraduate or graduate degree, or major, in their teaching field as a measure of progress toward Goal 4 on science and mathematics education (NEGP, 1992). The 1990 Council report on science-mathematics indicators also reported these data as a measure of teachers' coursework preparation.

The 1991 Schools and Staffing Survey (SASS) provides the most recent state-by-state data on college majors of teachers, as reported in Table 24. The state percentages are based on responses from a representative sample of teachers in each state. Small states that had less than 30 math or science teachers in the sample do not have state estimates. The results show that the percentage of high school math teachers with a major in math or math education (undergraduate or graduate degree) varies from 42 percent (Alaska) to 90 percent (Minnesota), for teachers with their main assignment in math. For all teachers of math, the percentages vary from 25 percent (Aiaska) to 87 percent (Alabama) of teachers with a math major. The national average is 69 percent with a math major among teachers with their main assignment in math, and 61 percent with a major among all math teachers. (Standard error estimates for Table 24 are in Appendix Table B-20.)

Table 24 also shows the percentage of high school science teachers with a major in a field of science or in science education. The percentage of teachers with a science major varies from 58 percent (Arkansas) to 91 percent (Maryland), for teachers with their main assignment in science. For all teachers of high school science, the state percentages vary from 48 percent (Arkansas) to 85 percent (Connecticut). The national average is 79 percent with a science major among

TABLE 24
PERCENTAGE OF MATHEMATICS AND SCIENCE TEACHERS WITH MAJOR IN FIELD (GRADES 9—12, SPRING 1991)

	mathematics		SCIENCE	
STATE	Maln Assignment \% with Malor in Math	All Teachers: \% with Major In Math	Main Assignment: \% with Majar in Science	All Teachers: $\%$ with Major In Sclence
Alabama	89%	87\%	79%	63%
Alaska	42	25	86	68
Arizona	68	64	76	69
Arkansas	69	67	58	48
California	44	33	76	62
Colorado	58	49	87	75
Connecticut	80	73	88	85
Delaware	-	-	-	-
Dist. of Coiumbia	-	-	-	-
Florida	56	52	71	67
Georgia	84	75	87	77
Hawaii	-	-	-	-
Idaho	55	45	77	63
Illinois	69	63	83	77
Indiana	79	68	82	79
lowa	69	57	82	72
Kansas	82	78	72	66
Kentucky	86	77	85	72
Lovisiana	60	55	66	50
Maine	69	62	83	73
Maryland	74	68	91	82
Massachuseits	68	58	86	84
Michigan	76	60	82	70
Minnesota	90	79	87	80
Mississippi	84	80	77	71
Missouri	73	70	79	65
Montana	73	72	75	71
Nebraska	87	76	83	72
Nevada	-	67	-	-
New Hampshire	-	-	-	-
New Jersey	84	75	76	73
New Mexico	55	54	48	41
New York	70	60	89	84
North Carolina	77	73	89	84
North Dakota	79	69	83	63
Ohio	78	71	73	66
Oklahoma	68	65	66	58
Oregon	59	48	90	78
Pennsylvania	84	82	83	78
Rhode Island	-	-	-	-
South Carolina	80	71	79	64
South Dakota	84	67	68	57
Tennessee	56	51	59	52
Texas	59	54	64	56
Utah	65	47	76	66
Vermont	-	-	-	-
Virginia	67	62	78	69
Washington	60	43	76	64
West Virginia	78	74	75	70
Wisconsin	87	75	83	74
Wyoming	85	73	82	77
NATION	69%	61 \%	79%	70 \%

[^20]FIGURE 13
CHANGE IN PERCENTAGE OF TEACHERS WITH MAJORS IN MATHEMATICS: 1988 TO 1991
-1988 -1991

FIGURE 14
CHANGE IN PERCENTAGE OF TEACHERS WITH MAJORS IN SCIENCE: 1988 TO 1991
-1988 $\mathbf{\square} 1991$

Notes Percent with major = Percent of assigned teachers with an undergraduate or graduate degree with a major in science field or science education, see standard errors for estimales in Appendx Table B-20 Interpret 1988 to '91 change by state with caution considering standard errors

Source NCES. Schools and Staffing Survey. Pubic School Teachers. Washington. OC. US Deparment of Education. Spring 1988. Spring 1991 Council of Chiel State School Otricers. State Education Assessment Center Washington. OC. 1993
teachers with their main assignment in science, and 70 percent for all science teachers.

The bar graph in Figure 13 illustrates the state-tostate variation in percentages of high school math reachers with a major in their field, and the percent change from 1988 to 1991. Nationally, the percentage of high school mathematics teachers with a mathematics major decreased by 2 percent from 1988 to 1991 , from 63 to 61 percent. Figure 14 shows the variation in scien:e majors by state and the percent change from 1988 to 1991 . Nationally, the percentage of science teachers with a science major increased by 6 percent, from 64 to 70 percent. Thus, only slight improvement has been made toward one objective for National Goal 4 io "increase by 50 percent the number of teachers with a suibstantive background in science and math" NEGP, 1992).

In addition to comparison of state averages, many educators are interested in the variation in preparation of teachers within their state. One approach is to examine the differences in teacher preparation by characteristics of the schools. The results of Oakes' (1990b) aralysis of teacher preparation from a national survey of teachers and schools in 1986 are illustrated in Figure 12. The data show clearly that teachers qualifications vary significantly by the characteristics of schools. Students in inner city and urban schools had approximately 70 percent of science and mathematics teachers who were certified in their assigned field and about half of the teachers had a degree in their assigned field. Students in schools with more than 90 percent minority teachers had even less chance of having a well-qualified teacher in science or mathematics.

The results of the National Education Longitudinal Study of the eighth grade class of 1988 showed that 50 percent of math teachers of high-SES students had a degree in math or math education, while 38 percent of teachers of low-SES students had a math degree (Horn \& Hafner, 1992).

Amount of Teacher Coursework

The preparation of teachers in their teaching field can also be measured by the number of undergraduate and graduate courses in science and mathematics that teachers have completed. This indicator can provide a more current picture of the preparation of teachers in their field, since the college major could have been completed from 1 to 40 years previously. Also, the number of science and mathematics courses can indicate the preparation of teachers at ne level of elementary, middle grades, and high schools. The number of teachers with a degree in science and

[^21]mathematics may not be a useful indicator in many states for elementary and middle grades teachers.

Two sources of state-level data are available on the number of courses teachers have completed: NAEP and SASS. Both sources are from teachers selfreports. This report includes data from the 1990 NAEP Mathematics teacher questionnaire.

On the NAEP questionnaire teachers reported the number of college courses in completed in the seven areas of mathematics content recommended by the NCTM Professional Standards for the Teaching of Mathematics. As a national average, 52 percent of 8th grade students had mathematics teachers one or more mathematics courses in each of six or seven of the recommended content areas. Forty-eight percent of teachers had one or more courses in five or fewer of the areas. The NAEP results for 1990 demonstrated that the amount of mathematics coursework completed by teachers has a positive relationship to student mathematics proficiency (Mullis et al., 1991). Students who have teachers with coursework in six or seven of the mathematics areas have a significantly higher mathematics proficiency (271) than students who have teachers with coursework in four or five areas (263) or zero to three areas (262)."

The state level data on mathematics coursework of teachers shows that seven of the ten states with the highest average mathematics proficiency had rates of teacher coursework in six or seven areas that were above the national average. Three of the high scoring states, North Dakota, Minnesota, and Nebraska, had over 70 percent of their students being taught by teachers with coursework in six or seven areas (see Table B-19 in the Appendix). Conversely, seven of the ten states with the lowest average mathematics proficiency had less than 50 percent of students being taught by teachers with coursework in six or seven areas.

The NAEP assessment also asked teachers to report the number of courses in methods of teaching mathematics that they had completed. The 1990 results indicate that nationally 28 percent of 8 th grade students had teachers who had no coursework in the teaching of mathematics, while at the other extreme 20 percent of 8 th grade students had teachers with three or more methods courses. However, these differences among teachers in mathematics methods courses were not related to higher or lower average student mathematics proficiency on NAEP. It is possible that the quality of preparation and teachers' knowledge of how to teach 8th grade mathematics does make a difference, but the current NAEP questionnaire does not collect this information.

INDICATORS OF SCHOOL CONDITIONS

The conditions for teaching and learning are important factors in the effectiveness of science and mathematics education. Since the initial development of a system of science-mathematics indicators, the Council has sought useful, meaningful indicators of differences in school conditions across states. This report focuses on three kinds of indicators: (1) size of science and mathematics classes, (2) availability of instructional materials and resources, and (3) use of calculators in the classroom.

Class Size

Data from the 1991 Schools and Staffing Survey in Table 25 show that the average class in high school mathematics varies by state from 26 students (California, Florida) to 17 students (Maine, New Jersey, North Dakota, Oklahoma, Wyoming). The national average is 21 students per mathematics class. From 1988 to 1991, the average mathematics class maintained the same number of students, while the average science class increased from 22 to 23 . In advanced mathematics classes (algebra 2 , trigonometry, or calculus), the average class size is also 22 students. Class size in advanced mathematics varies by state from 30 students per class to 15 students per class. The variation in class size by state is illustrated in Figure 15.

The percent of classes over 30 students provides information on class size distribution by showing the proportion of very large classes in a state. National sample data from SASS show that 9 percent of all math classes have over 30 students. The national results also show that 14 percent of algebra 1 classes have more than 30 students and 11 percent of advanced mathematics classes have over 30 students.

AVERAGE CLASS SIZE AND PERCENT OF CLASSES OVER 30 STUDENTS (GRADES 9-12)

	Average Size	Percent Classes Over 30
All Mathematics	21	9
Algebra ${ }^{\text {a }}$	23	14
Advanced Math (algebra 2, Irigonometry, calculus)	22	11
All Science	23	11
Biology	23	10
Physics	18	5

Five states have over 20 percent of classes in advanced mathematics with more than 30 studentsFlorida (50 percent), California (37 percent), Utah (35 percent), New Mexico (24 percent), Minnesota (22 percent). Twelve states have less than 1 percent of mathematics classes with more than 30 students.

Table 25 shows science class size differs considerably by state. Utah has an average of 28 students per
science class and California has an average of 27 per class, while Wyoming averages 16 students in a science class. The national average is 23 students per class. In biology classes, the average size is also 23 students and state averages vary from 17 to 26 students per class.

Nationally, 11 percent of all science classes are over 30 students. The national results also show that 10 percent of biology classes have more than 30 students and 5 percent of physics classes are larger than 30.

Five states have over 20 percent of biology classes with more than 30 students-California, Florida, New York, Tennessee, and Utah. Fifteen states have less than 1 percent of science classes with more than 30 students.

Standard errors for class size by state are shown in Appendix Table B-21.

Teachers' Perceptions of the Availability of Materials

A second indicator of school conditions by state focuses on mathematics education. The 1990 NAEP teacher questionnaire asked eighth grade mathematics teachers: "How well supplied are you by your school system with the instructional materials and other resources you need to teach your class?" The state indicator from the compiled resuls, as shown in Figure 16, is subjective because it is based on teacher attitudes or opinions, but it does generate data directly from the classroom-level on the availability of materials and resources.

Nationally, teachers of 31 percent of eighth grade students reported they "get some or none" of the materials and resources they need, while 13 percent said they received "all" the materials and resources they need and 56 percent said they received "most" of what they need. The level of agreement with a shortage of materials and resources varied by the socioeconomic level of the school community-only 10 percent in advantaged urban schools, but 40 percent in disadvantaged urban schools and 31 percent in rural schools (29 percent in schools in other areas).

The state percentage of eighth grade teachers that reported having "some or none" of needed materials varied from over 45 percent (Lcuisiana, West Virginia, District of Columbia, Guam, and Virgin Islands) to less than 20 percent (Iowa and W yoming). The state NAEP analysis conducted by CCSSO examined the relationship of average state mathematics proficiency to teachers' perceptions of the availability of mathematics materials and resources. There is a strong correlation ($r=-.861$) between average state mathematics proficiency and the state's percentage of students with teachers who receive some or none of the instructional materials and resources they need. As illustrated in Figure 16, the states in the top quintile of mathematics proficiency had an average

TABLE 25
average class size in mathematics and science and percent classes over 30 STUdents (GRADES 9-12)

State	All Math Average Class	Percent All Classes Over 30	Advanced Math Average Class	Percent Advanced Over 30	All Science Average Class	Percent All Classes Over 30	Blology Average Class	Percent Biology Over 30
Alabama	20.7	78%	18.9	2.5 \%	24.3	17.4 \%	22.8	7.8 \%
Alaska	18.5	10.0	-	-	20.3	13.4	17.7	15.6
Arizona	21.7	12.2	24.9	23.4	23.9	13.4	24.6	17.8
Arkansas	20.3	<1.0	-	-	21.0	1.6	20.4	<1.0
California	26.0	29.2	29.0	36.9	27.2	27.4	26.3	21.8
Colorado	20.6	5.0	21.2	7.7	23.6	8.0	23.3	6.5
Connecticut	18.9	<1.0	18.5	0.0	20.4	2.9	-	-
Delaware	-	-	-	-	-	-	-	-
Dist. of Columbia	-	-	-	-	-	-	-	-
Florida	25.9	29.8	30.4	50.2	24.2	22.1	25.3	22.2
Georgia	21.0	10.0	23.7	14.7	23.5	11.7	21.8	<1.0
Hawaii	18.8	7.7	-	-	-	-	-	-
Idaho	20.4	7.9	20.1	11.6	22.8	5.1	23.5	2.5
Illinois	21.7	8.2	20.8	6.8	22.2	10.6	206	<1.0
Indiana	18.2	30	20.2	3.5	22.6	4.3	21.4	<1.0
lowa	20.3	0.8	17.8	<1.0	20.6	1.0	20.5	<1.0
Kansas	19.0	8.6	14.3	<1.0	20.2	4.8	21.5	<1.0
Kentucky	22.0	11.8	22.6	11.8	23.8	10.6	22.7	9.3
Louisiana	21.3	7.3	21.0	7.3	26.3	17.8	248	15.7
Maine	17.2	<1.0	16.0	0.0	18.9	<1.0	-	-
Maryland	21.8	12.9	22.5	10.2	24.2	21.5	23.1	17.3
Massachusetts	19.0	1.9	20.6	<1.0	21.0	3.2	22.1	<1.0
Michigan	21.9	12.0	23.7	7.7	23.2	11.4	22.7	10.7
Minnesola	22.9	12.5	25.0	21.9	24.7	8.4	24.5	7.8
Mississippi	20.7	5.7	19.9	<1.0	24.3	13.6	24.3	12.8
Missouri	20.2	1.6	190	3.2	20.8	3.2	19.9	<1.0
Montana	17.5	1.3	18.7	<1.0	16.3	<1.0	17.0	<1.0
Nebraska	17.8	1.4	17.7	<1.0	18.8	3.8	18.7	<1.0
Nevada	22.7	16.2	-	-	23.8	16.2	-	-
New Hampshire	19.1	<1.0	-	-	19.2	0.0	-	-
New Jersey	17.3	<1.0	20.4	0.0	20.1	1.1	19.2	<1.0
New Mexico	22.8	12.2	26.9	24.2	22.2	7.8	22.0	7.1
New York	18.9	7.6	20.6	15.0	24.2	21.3	27.6	20.1
North Carolina	21.9	4.4	23.3	6.1	22.4	30	-	-
North Dakota	16.9	1.0	15.1	<1.0	18.7	48	17.5	<1.0
Ohio	20.0	1.6	206	<1.0	22.2	4.9	22.3	5.6
Oklahoma	16.5	2.4	16.1	<1.0	19.8	5.9	19.4	2.9
Oregon	20.9	5.8	21.6	6.1	22.0	6.0	21.8	5.8
Pennsylvania	21.0	2.9	21.2	<1.0	22.1	9.2	-	-
Rhode Island	-	-	-	-	-	-7	-	-
South Carolina	201	1.7	19.0	<1.0	23.2	7.7	22.7	3.8
South Dakota	18.6	4.0	16.2	3.7	19.7	3.6	19.3	3.1
Tennessee	22.0	14.2	23.1	15.0	25.8	19.4	26.5	28.4
Texas	20.1	29	18.2	1.8	22.5	5.2	23.1	6.4
Utah	25.3	29.1	27.2	35.1	27.9	41.7	25.7	23.2
Vermont	17.8	2.6	-	-	18.3	<1.0	-	-
Virginia	21.1	3.6	22.1	5.8	22.1	07	-	-
Washington	22.5	8.2	22.8	16.9	25.6	17.1	26.6	19.1
West Virginia	19.9	1.8	20.3	2.3	20.8	29	20.4	0.9
Wisconsin	20.9	4.8	19.3	6.0	22.2	4.5	23.2	<1.0
Wyoming	17.2	<1.0	-	-	16.5	<1.0	166	<1.0
NATION	21.1	8.8\%	21.7	10.9\%	23.0	11.0\%	23.1	9.7\%

[^22]FIGURE 15
average class size in high school mathematics ano science
\square Mall \square Science
30

15

Source NCES. Schools and Stating Survey. Pubic Schoci Teachers Spring 1991
Council of Chet Siate School Ollicers. State Education Assessment Center. Wasningion, OC. 1993
of 24 percent of students with teachers reporting some or no materials and resources, while the states in the bottom quartile of mathematics proficiency had an average of 52 percent of students with teachers reporting this problem. ${ }^{1:}$

Use of Calculators

The 1990 NAEP mathematics assessment provided state-level data on students' use of calculators.
Nationwide, 19 percent of the eighth grade students in 1990 had unrestricted use of hand calculators in their mathematics classrooms, and 24 percent were permitted use of calculators on tests. The mean NAEP score of students having access to calculators (280) was significantly higher than the score for students with restrictions (263).

The results indicate that students who have access to calculators as part of their daily learning of mathematics are learning more and are not disadvantaged when asked on tests to compete with students who have only used paper and pencil. A large portion of the assessment required these calculator-friendly students to work without their calculators during the NAEP tests.

Figure 17 shows the relationship of overall state mathematics proficiency and the percentage of students allowed unrestricted use of the calculator in
mathematics class at the eighth grade level. There is a significant positive relationship. Eleven of the 12 states with highest overall student mathematics proficiency had at least 20 percent of their students reporting unrestricted use of calculators in their mathematics classes, with a mean of 26 percent. Nine of the 12 states with the lowest overall mathematics proficiency had less than 15 percent of their students with unrestricted use of calculators, with a mean of 16 percent."

[^23]FIGURE 16
PERCENTAGE OF STUDENTS TAUGHT BY TEACHERS REPORTING THEY GET SOME OR NDNE OF THE MATERIALS AND RESOURCES THEY NEED, BY STATE RANK ON MATH PROFICIENCY

[^24]Council of Chuet State School Ofticers State Education Assessment Center. Washingron. DC. 1993

FIGURE 17
PERCENTAGE OF STUDENTS ALLOWED UNRESTRICTED USE OF CALCULATORS IN MATH CLASS, BY STATE RANK ON MATH PROFICIENCY

Source. Mullis et al. The State ol Mathematics Achrevement NAEP's 1990 Assessment of the Nation and the Trial Assessment of the Siates U S Department ol Education 1991 Council of Chuel State School Officers. Slate Educalion Assessment Center. Washington. DC. 1993

SUMMARY: STATE AND NATIONAL POLICY ISSUES AND SCIENCE-MATHEMATICS INDICATORS

A major issue in the 1990s for science and mathematics education-and education in general-is the effects of policy reforms and initiatives on improving student learning. The national education goals set a high standard by assessing progress on student learning against achievement levels that reflect the consensus of subject area experts and teachers about what students should know and be able to do. The 1992 NAEP mathematics results show policymakers and mathematics educators that only a quarter of grade 8 students are at or above the Proficient level, and just over 60 percent are at or above the Basic level of achievement.

From 1990 to 1992, 18 states made significant improvement in average student proficiency: In the content areas of the grade 8 mathematics NAEP, 9 states improved student proficiency in Numbers and Operations, 14 states improved in Measurement, 10 states improved in Algebra and Functions, and 4 states improved in Geometry. Only 2 states had significant improvement in the average proficiency of African American students, and 4 states had significant improvement in the proficiency of Hispanic students.

The state results on AP examinations indicate student opportunities and performance at the advanced level of science and mathematics. In 1992, 4 percent of 12 th grade students took the AP calculus examination, and 4.4 percent took an AP examination in a science subject. States varied in AP participation from less than 1 percent to over 6 percent of students. Nationaily, over 60 percent of students received a qualified score. Minority students comprised onefourth of all students taking science and mathematics AP examinations, and almost one half were females.

In 1990, states hegan reporting data to CCSSO on student enrollments in all secondary science and mathematics courses. Course enrollment indicators by state show how far students are procerding in science and mathematics, the rate of progress in improving science and mathematics opportunities, and the extent of equity in science and mathematics education.

With the 1992 state data, we can begin to analyze trends at the state and national level. In 1992, 87 percent of public high school students were taking mathematics, which was a 3 -percent increase since 1990. This overall rise in mathematics enrollments is important because higher level mathematics courses (above first-year algebra) accounted for most of the increase. For example, the percentage of students taking algebra 2 by graduation is up to 55 percent, a 6percent increase from 1990 to 1992 . The data indicate that, as of 1992 , slightly more than half of grad-
uates take 3 years of high school mathematics. States vary from 31 to 73 percent of students taking three years of mathematics.

In science, 75 percent of public high school students were taking a course as of 1991-92, which represents a 3-percent increase since 1990. As of 1992, 49 percent of students took chemistry by graduation, which indicates that half of graduates take three high school science courses. The percentage taking three science courses increased 4 percent since 1990. States vary from 33 to 67 percent of students taking three years of science.

Indicators also show the relationship of state graduation requirements and state policies to student enrollments in science and mathematics. In 1992, the states with higher graduation requirements (2.5 to 3 credits) had significantly greater overall enrollments in mathematics and science than did states with lower requirements, and these states also had greater average enrollments in algebra 2, chemistry, and physics. The rate of increase in course enrollments from 1990 to 1992 was slightly greater for the highrequirement states. Almost all states had increased student participation in secondary science and mathematics. The role of states in implementing state curriculum frameworks and state assessment programs are also likely factors in increased enrollments.

Gender differences in science and mathematics continued to decline from 1990 to 1992. In most states, female and male participation is the same except in the most advanced mathematics and physical science courses, where more males continue to enroll. A majority of states have higher enrollments of girls in chemistry and advanced biology courses. Equity' in science and mathenatics for minority students has improved more slowly. National course enrollment trends from 1982 to 1990 show that students in all race/ethnic groups have significantly higher enrollments. At advanced levels of science and mathematics, Asian Americans have the greatest enrollments, and Hispanic students have the greatest increase in enrollments. Enrollments increased at about the same rate for African Americans and whites. In 1990, the national rates of students taking chemistry by graduation were about 4 of 10 African Americans, 6 of 10 Asian Americans, 4 of 10 Hispanics, and 5 of 10 whites.

Education policymakers have been concerned about our supply of well qualified teachers in science and mathematics. One of the objectives of National Goal 4 on science and mathematics is to "increase the number of teachers with a substantive background in science and mathematics by 50 percent."

The science-math indicators show that our schools
have increased the number of mathematics teachers by 7 percent since 1990. This compares to a total enrollment increase of 3 percent in mathematics, indicating that the average student/teacher ratio has improved in mathematics. The total number of science teachers remained relatively constant over the two-year period, white enrollments increased three percent. The number of biology and chemistry teachers increased about 1 percent, while he number of teachers declined in physics (3 percent) and earth science (8 percent). The science changes may reflect shifts berween subjects. Student/teacher ratios show there are wide variations across states in student opportunity to study mathematics and science. There are also wide differences in opportunities by subject, differing from almost all students having a mathematics teacher to 1 in 6 students having access to a physics teacher.

From 1990 to 1992, the number of noncertified teachers in high school mathematics went up by 3 percent (to 12 percent), possibly related to the increased number of mathematics teachers. The number of noncertified teachers in science remained at about 10 percent. About one-third of states reported more than 5 percent noncertified teachers in math or science, and one-fifth of stares have over 10 percent noncertified teachers in mathematics or science.

The percentage of U.S. high school mathematics teachers with a math major decreased by 2 percent over the 3 -year period, from 63 to 61 percent. The percentage of science teachers with a science major increased by ó percent, from 64 to 70 percent. Thus, only slight improvement has been made toward one objective for National Goal 4.

In 1292, 5 percent of high school mathematics teachers and 4 percent of science teachers were new, first-year teachers. These numbers can be compared to 7 percent of mathematics and science teachers who were newly hired teachers, experienced or firstyear. Only five states had more than 6 percent new, first-year teachers. In nine states, over half of new hires were experienced teachers. These data show that some states have had more success in filling science and math teaching positions with experienced teachers, and only a few states have hired large numbers of new graduates.

The percentage of new minority teachers is slightly greater than the current minority representation in the science-mathematics teaching force. The percentage of new female teachers is substantially greater than the current proportion of female teachers. Thus, science and mathematics are areas of growth for female teachers, attracting many more than in previous years. Many more minority teachers will be needed to hegin to match the proportion of minority students in our schools.

The Council incorporated a small study of science and mathematics indicators for large cities in this
report. The indicators for large cities in five states confirmed that large city schools have difficulty attracting and hiring science and mathematics teachers. Large city schools have the same percent of new, first-year teachers as compared to their state averages (about 5 percent), bur they have fewer experienced teachers among new hires.

The indicators of school conditions by state show widely different conditions for science and mathematics teaching. The average class size in science and mathematics varies from 16 to 27 . Some states have a high percentage of classes with over 30 students in lower and upper level courses. The data from the 1990 NAEP on two resource indicators-use of calculators in the classroom and mathematics teachers' perceptions of instructional materials-show that states differ greatly in the conditions for science and mathematics teaching. The states with highest use of calculators have more than twice as many students with unrestricted use as compared to states with the lowest rates. In a few states, almost half of mathematics teachers say they have a problem with teaching materials, whereas in other states fewer than 1 in 5 teachers report a problem with materials. These data reveal large state-level differences in school conditions, and the NAEP data do show a strong association with student mathematics proficiency.

The science and mathematics indicators presented in this report provide state-by-state comparisons and national indicators as of the 1991-92 school year. Trends analysis of science and mathematics indicators was initiated with this report, and the Council expects to continue to analyze trends with data for the 1993-94 school year. The science and mathematics indicators are intended for use by policymakers, educators, and researchers. This report focuses on uses of the indicators at state and national levels. However. we hope our efforts in identifying and developing indicators will be pursued further within states and school districts to analyze and report data that will be useful to educators and decision makers at all levels.

ADVISORS ON SCIENCE AND MATHEMATICS INDICATORS

SCIENCE AND MATHEMATICS AND EDUCATION RESEARCH

Leigh Burstein, Graduate School of Education, University of California, Los Angeles
John Dossey, Mathematics, Illinois State University'
Susan Fuhrman, Center for Policy Research in Education, Rutgers University
Dorothy Gilford, Committee on National Statistics, National Research Council
Margaret Goertz, Division of Education Policy Research and Services, Educational Testing Service
Henry Heikkinen, Department of Chemistry, Uniulersity of Northern Colorado
David Licata, High School Programs, American Chemical Scciety
Shirley Malcom, American Association for the Advancement of Science
Jean McDonald, Senior Fellow, National Covernors' Association
Andrew Porter, Wisconsin Center for Education Research, University of Wisconsin-Madison
Senta Raizen, National Center for Improving Science Education, Washington, DC
Richard Shavelson, Graduate School of Education, University of California-Santa Barbara
Iris Weiss, Horizon Research, North Carolina

REPRESENTATIVES FROM STATE DEPARTMENTS OF EDUCATION

Richard Clark, Science Education Specialist, Minnesota (retired)
James Collins, Science Education Director, Texas
Martha Dimit, Assistant Director of Teacher Education and Certification, Ohio
Joseph D. Exline, Associate Director for Science, Virginia
James Fulton, Program Evaluation and Research Division, California
Linda Harageones, Education Information Services, Florida
Rex Jones, Director, Data Processing Section, Alabama
Jo Ann Kerrey, Supervisor, Management Information System, South Carolina
Steven Leinwand, Mathematics Supervisor, Connecticut
Ervin Marsh, Director of Certification and Personnel Ditision, Delaware
Fred Paul, Bureau of Mathematics, New York (retired)
Peter Prowda, Office of Research and Evaluation, Connecticut
Charles Watson, Mathematics Specialist, Arkansas
Susan Zelman, Assistant Commissioner for Personnel, Massachusetts

NATIONAL SCIENCE FOUNDATION, EDUCATION AND HUMAN RESOURCES DIRECTORATE (OBSERVERS)

Larry Suter, Program Officer
Kenneth Travers, Head, Division of Research, Evaluation, 心 Dissemination
Susan Snyder
Richard Berry (retired)

U.S. DEPARTMENT OF EDUCATION, NATIONAL CENTER FOR EDUCATION STATISTICS

Paul Planchon

Daniel Kasprzyk
Mary Rollefson

STATE CONTACTS

Contact Persons in State Departments of Education for Science and Mathematics Indicators

Alabama	Ben Pertit	Montana	Dori Nielson
Alaska	Cathy Carney	Nebraska	Bob Beecham
Arizona	Michael Lang	Nevada	David Snith
Arkansas	Charles Watson	New Hampshire	Cecile Perrin
California	James Fulton	New Jersey	Howard Bookin
Colorado	Jo Ann Keith	New Mexico	Henry Borgrink
Connecticut	Peter Prowda	New York	Leonard Powell
Delaware	Robert Boozer	North Carolina	William Spooner
District of Columbia	Roger Fish	North Dakota	Ronald Torgeson
Florida	Linda Harageones	Ohio	Irene Bandy
Gcorgia	Eugene Wallace	Oklahoma	Patti High
Hawaii	Richard Asato	Oregon	Steve Slater
Idaho	Robert Dutton	Pennsylvania	Roger Hunmel
Illinois	Donald Corrigan	Puerto Rico	Juan Rivera Berdecia
Indiana	Donna Long	Rhode Island	James Karon
Iowa	Leland Tack	South Carolina	Jo Ann Kerrey
Kansas	Ann Harrison	South Dakota	Don Scott
Kentucky	Sheila Vice	Tennessec	Nancy Stetten
Louisiana	Barbara Andrepont	Texas	Bob Barker
Maine	James Watkins	Utah	Hal Robins
Maryland	Mark Moody	Vermont	Gerald Cassell
Massachusetts	Beverly Mayeres	Virginia	Mona Mallory
Michigan	Nancy Mincemoyer	Washington	David Kennedy
Minnesota	Carol Hokenson	West Virginia	Doris White
Mississippi	Joanne Mulvihill	Wisconsin	Elizabeth Ford
Missouri	John Jones	Wyoming	William Futrell

APPENDIX A

Table A-1 Average 8th Grade Proficiency in Mathematics Content Areas on 1992 NAEP Assessment 64
Table A-2 Students Taking Biology and Calculus Advanced Placement (AP) Examination by Race/Ethnicity; Students Taking Chemistry, Physics, and Computer Science AP Examination 65
Table A-3 Percentage of Students with Teachers Emphasizing Numbers/Operations and Measurement by State Rank on Overall Math Proficiency (Quintile Average) 66
Table A-4 Percentage of Students with Teachers Emphasizing Geometry and Algebra/Functions by State Rank on Overall Math Proficiency (Quintile Average) 67
Table A-5 Overall Mathematics Proficiency and Percentage of Sudents Receiving Heavy Teacher Emphasis in Content Areas on 1990 NAEP 68
Table A-6 Elementary Class Time on Mathematics and Science 69
Table A-7 Students Taking Science Courses in October 1991 as a Percent of Students in Grades 7-8 70
Table A-8 Students Taking Mathematics Courses in October 1991 as a Percent of Students in Grades 7-8 71
Table A-9 State Requirements in Mathematics and Science for High School Graduation (1992) 72
Table A-10 Percentage of Students in Each Grade Taking First-Year Biology (October 1991) 73
Table A-11 Estimated Proportion of Students Entering 9th Grade in 1988 Taking Selected Math and Science Courses 74
Table A-12 Students Taking Biology and Chemistry Courses in October 1991 as a Percent of Students in Grades 9-12 75
Table A-13 Students Taking Physics and Earth Science Courses in October 1991 as a Percent of Students in Grades 9—12 76
Table A-14 Students Taking General, Physical, Integrated, and Other Science Courses, and Computer Science Courses in October 1991 as a Percent of Students in Grades 9—12 77
Table A-15 Students Taking Review Mathematics (e.g., General Math) and Informal Mathematics (c.g., Pre-Algebra) in October 1991 as a Percent of Students in Grades 9-12 78
Table A-16 Students Taking Formal Mathematics (Algebra-Calculus) in October 1991 as a Percent of Students in Grades 9-12 79
Table A-17 Percent Change in Students Taking High School Mathematics by State Graduation Requirements: 1990 to 1992 80
Table A-18 Percent Change in Students Taking High School Science by State Graduation Requirements: 1990 to 1992 81

APPENDIX TABLE A-1
average ith grade proficiency in mathematics content areas ON 1992 NAEP ASSESSMENT

Grade 8 Public Schools	Numbers and Operations	Measurement	Geomatry	Data Analysis, Statistics, and Probability	$\begin{gathered} \text { Algebra } \\ \text { and } \\ \text { Functions } \end{gathered}$	Estimation
STATES						
Alabama	258	245	245	250	253	260
Arizona	269	264	260	265	264 >	269
Arkansas	262	251	250	254	255	263
California	263	$258>$	259	258	258	263
Colorado	273 >	$273>$	269	274	270 >	273
Connecticut	277	275 >	268	274	270	275
Delaware	267	258	257	262	263	264
Dist. of Columbia	243 >	221	231	229 >	237	241
Florida	264	< 54	255	259	260	264
Georgia	265	253	253	259	259	263
Hawaii	$261>$	$254>$	257 >	$249>$	256 >	260
Idaho	277	276	271	274	274 >	274
Indiana	272	269	266	273	267	271
lowa	285	287 >	278	285	$280>$	282
Kentucky	266 >	259 >	256	262	260	266
Louisiana	256	242	244	248	249	258
Maine	280	282	274	282	274	275
Maryland	269	261	259	266	264	2.64
Massachusetts	276	270	267	274	271	275
Michigan	270	266	261	268	267	268
Minnesota	282	285 >	278 >	284 >	281 >	284
Mississippi	256	236	239	243	245	259
Missouri	272	271	266	272	270	271
Nebraska	279	278	274	278	275	277
New Hampshire	$280>$	$280>$	273	$281>$	274	277
Ni. v Jersey	276	268	255	271	272	274
"icw Mexico	$263>$	257	256	258	257	265
w.w York	$270>$	262	261	268	265	266
P.Jrth Carolina	$261>$	253 >	$254>$	258 >	259 >	2.63
North Dakota	286	285	277	286	279	283
Onio	272	266	262	270	267	269
Oklahoma	271	266 >	262	269	267	271
Pennsylvania	274	271	265	273	270	272
Rhode Island	269 >	263 >	$259>$	$266>$	266 >	269
South Carolina	265	257	256	258	259	264
Tennessee	264	253	252	259	257	264
Texas	267	260 >	262	263	266 >	267
Utah	276	275	269	275	272	274
Virginia	272	265	261	268	267	271
West Virginia	263	256	254	260	257	263
Wisconsin	280	279	272	280	275	278
Wyoming	276	278 >	272	275	271	276
TERRITORIES						
Guam	240	228	239	221 >	$235>$	244
Virgin Islands	231	211	222	214 >	221	231
NATION	$272>$	$266>$	$263>$	268 >	267 >	271

[^25]APPENDIX TABLE A-2
STUDENTS TAKING BIOLOGY AND CALCULUS ADVANCED PLACEMENT (AP) EXAMINATION BY RACE/ETHNICITY; STUDENTS TAKING CHEMISTRY, PHYSICS AND COMPUTER SÜENCE AP EXAMINATION

	Blology					Caiculus					Chamistry	Physics	Computer Science	$\begin{gathered} \text { All } \\ \text { Flields } \end{gathered}$
State	Total Taking Exam	\% American Indlan	$\begin{gathered} \% \\ \text { Black } \end{gathered}$	$\begin{gathered} \% \\ \text { Hispanic } \end{gathered}$	$\begin{gathered} \text { fio } \\ \text { Asian } \end{gathered}$	Totai Taking Exam	American indian	$\stackrel{\%}{\text { Black }}$	$\begin{gathered} \% \\ \text { Hispanic } \end{gathered}$	$\begin{gathered} \% \\ \text { Asian } \end{gathered}$	Total Taking Exam	Total Taking Exam	Total Taking Exam	\% Pubile Schools of Total
Alabama	416	1\%	10\%	1\%	6\%	924	1\%	11\%	1\%	6\%	210	200	101	85\%
Alaska	54	0	2	0	6	208	4	1	2	9	75	61	16	100
Arizona	244	0	2	7	10	1.066	3	2	8	10	360	322	62	91
Arkansas	118	2	4	0	8	282	1	3	0.4	11	83	56	6	96
California	6.574	1	2	6	39	14,034	0.5	2	9	42	3,684	3,551	1,095	82
Colorado	627	1	1	5	7	527	1	2	11	20	427	253	113	94
Connecticut	716	0.3	3	2	10	1,535	0.2	2	2	12	569	588	120	55
Delaware	143	0	0	2	10	378	0.3	3	1	13	106	77	49	53
Dist. of Columbia	233	0	24	6	7	267	0.4	17	3	9	97	172	46	34
Florida	2,368	0.3	7	13	9	4,898	0.3	6	12	11	1,592	1,659	828	87
Georgia	794	0	15		10	1,952	0.2	8	2	10	572	268	174	73
Hawaii	228	0	0	1	70	585	1	0	1	74	170	261	103	34
Idaho	143	1	0	0	3	245	1	0.4	1	3	76	29	15	100
Illinois	1.862	0.3	4	5	20	4.798	0.2	3	3	20	1,568	1,627	519	84
Indiana	1,004	0.2	4	2	5	2,434	0.4	2	1	7	1.206	697	32	90
lowa	149	U	1	1	5	355	0.3	0	1	6	81	97	34	85
Kansas	41	0	2	0	2	307	0.3	1	1	13	104	33	36	93
Kentucky	501	0.2	1	0.4	$0 . ?$	858	0.1	1	0.3	5	223	103	54	85
Louisiana	167	0	5	3	21	466	0	7	2	15	118	110	60	57
Maine	115	0	1	0	2	372	1	0.3	1	3	56	97	23	82
Maryland	1,034	0.5	8	3	21	2.413	01	3	2	20	799	787	315	72
Massachusetts	1,390	0.2	2	1	12	3,216	0.2	1	2	15	770	945	371	62
Michigan	1,171	0.4	2	0.1	15	2,945	0.4	3	1	12	974	559	244	82
Minnesota	243	0	1	0.4	7	891	0.1	1	1	8	137	66	39	83
Mississippi	164	0	9	1	2	318	0	4	1	7	62	74	5	78
Missouri	351	0.3	5	1	11	679	0.3	2	1	12	270	207	44	52
Montana	69	1	0	0	1	56	2	0	0	5	27	17	10	95
Nebraska	94	0	2	1	4	199	0	1	3	4	39	21	19	76
Nevada	93	0	0	2	14	257	1	2	5	16	127	82	53	90
New Hampshire	164	0	1	1	9	568	0.4	1	1	12	80	99	46	51
New Jersey	1.992	0.1	3	4	19	4,230	0.2	3	3	22	1,273	1,166	546	72
New Mexico	168	4	1	13	8	556	2	1	15	7	129	154	72	77
New York	6,206	0.2	5	4	15	10,908	0.2	4	3	19	2,618	3,230	1,292	81
North Carolina	1.073	0.5	7	1	6	2315	0.5	5		7	584	430	204	90
North Dakota	28	0	0	0	0	66	0	0	2	8	17	16	0	89
Ohio	968	0.1	3	1	15	3,076	0.2	3	1	11	998	689	247	74
Oklahoma	139	1	8	3	8	542	3	3	2	11	210	126	48	77
Oregon	287	0.3	0	2	10	596	0	0.3	1	11	120	154	62	90
Pennsylvania	1,350	0.2	2	1	8	3,610	0.1	2	1	12	950	801	410	67
Rhode Island	223	0	1	0	7	302	1	1	2	14	47	85	24	48
South Carolina	978	0	10	1	5	2,183	0.3	13	1	5	422	210	189	92
South Dakota	25	0	4	0	8	36	0	0	3	0	48	8	1	86
Tennessee	648	0	9	1	10	1,299	0.2	8	1	9	290	232	67	69
Texas	1,360	1	2	9	22	3.472	0.2	2	9	20	805	860	561	86
Ulah	1,331	0.2	0.3		5	1,787	0.2	0.2	1	5	629	379	168	96
Vermont	147	0	0	1	3	230	0	0	2	6	48	16	22	8 C
Virginia	1.381	0.4	5	2	14	3,399	0.1	4	2	14	922	486	605	86
Washington	340	1	1	3	11	1,267	1	1	2	17	158	140	92	82
West Virginia	210	0	2	0.5	7	358	0		1	7	146	38	55	92
Wisconsin	316	0	1	2	4	1,140	0.2	1		5	335	143	136	82
Wyoming	18	0	0	0	6	144	0	0	3	1	25	9	6	100
NATION	40,458	0.3\%	4\%	4\%	17\%	89,559	0.4\%	3\%	4\%	18\%	25,446	22,490	9,439	80\%

[^26]APPENDIX TABLE A-3
PERCENTAGE OF STUDENTS WITH TEACHERS EMPHASIZING NUMBERS/OPERATIONS AND MEASUREMENT BY STATE RANK ON OVERALL. MATH PROFICIENCY (QUINTILE AVERAGE)

Nole $r=-632 \rho<0.5$
Source Mullis et al. The State of Mathematres Achievement NAEP's 1990 Assessment of the Nation and the Trial Assessment of the Slates.
U.S Department ol Educalion. 1991

Councll of Chel State School Ollicers State Education Assessment Center. Washungton, EC 1993

$$
10
$$

APPENDIX TABLE A-4
PERCENTAGE OF STUDENTS WITH TEACHERS EMPHASIZING
GEOMETRY AND ALGEBRA/FUNCTIONS BY STATE RANK ON OVERALL MATH PROFICIENCY (QUINTILE AVERAGE)

Source Mullis et ai. The State ol Mathematics Achevement Nacp's 1990 Assessment of the Nation and the Trial Assessment of the States US Deparment
ol Education. 1991 . ol Education 1991
Council of Chiel State School Officers. State Education Assessment Center. Washnoton. OC 1993

APPENDIX TABLE A-5
OVERALL MATHEMATICS PROFICIENCY AND PERCENTAGE OF STUDENTS RECEIVING HEAVY TEACHER EMPHASIS IN CONTENT AREAS ON 1990 NAEP

	Mathematics Proficiency Score	Numbers/ Operatlons	\% Measurament	$\begin{gathered} \% \\ \text { Geometry } \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { Data, Prob., } \\ \text { Statistics } \end{gathered}$	Algebra/ Function
Alacama	252	58\%	24\%	26\%	11\%	41\%
Arizona	259	52	10	14	7	51
Arkansas	256	60	17	16	9	33
California	256	40	21	25	17	46
Colorado	267	37	7	20	14	51
Connecticut	270	41	28	27	16	48
Delaware	261	43	20	17	17	39
District of Columbia	231	47	25	25	31	46
Florida	255	56	19	18	16	42
Georgia	258	57	33	30	24	47
Guam	231	55	24	22	12	37
Hawaii	251	46	15	17	9	29
Idaho	272	48	10	14	9	56
Illinois	260	41	17	29	14	55
Indiana	267	55	14	15	4	45
lowa	278	48	14	25	4	49
Kentucky	256	58	13	25	15	46
Louisiana	246	57	21	14	11	59
Maryland	260	35	12	22	14	51
Michigan	264	44	12	20	10	47
Minnesota	276	36	9	19	8	50
Montana	280	40	12	31	13	58
Nebraska	276	41	15	19	8	51
New Hampshire	273	36	24	27	16	47
New Jersey	269	50	16	37	14	55
New Mexico	256	54	13	25	14	53
New York	261	44	17	40	24	49
North Carolina	250	49	13	17	13	44
North Dakota	281	49	17	23	9	56
Ohio	264	48	17	23	13	50
Oklahoma	263	58	11	17	5	55
Oregon	271	34	13	19	17	43
Pennsylvannia	266	47	15	17	6	48
Rhode Island	260	52	13	17	10	43
Texas	258	61	29	37	20	52
Virgin Islands	218	53	35	11	11	47
Virginia	264	46	12	18	10	52
West Virginia	256	48	13	14	8	41
Wisconsin	274	37	11	17	8	48
Wyoming	272	42	7	15	6	48
NATION	261	49\%	17\%	28\%	14\%	46\%

[^27]
APPENDIX TABLE A-6

ELEMENTARY CLASS TIME ON MATHEMATICS AND SCIENCE

state	Mathematics Grades 1-3 Hours/Week	Sciance Grades 1-3 Hours/Wbak	Mathematics Grades 4-6 Hours/Week	Sclence Grades 4 Hours/Wrek
Alabama	5.1	2.8	5.3	3.9
Alaska	4.7	2.9	4.9	2.8
Arizona	4.4	2.2	4.9	2.7
Arkansas	4.4	2.9	4.6	3.7
California	4.7	2.6	5.4	2.6
Colorado	4.7	2.1	4.7	2.8
Connecticut	5.0	2.5	4.3	2.3
Delaware	4.8	2.1	-	-
Dist. of Columbia	5.3	2.7	-	-
Florida	4.9	2.7	4.8	3.1
Georgia	4.9	2.4	4.4	3.5
Hawaii	4.7	2.0	4.5	2.5
Idaho	4.7	2.4	5.5	3.9
llinois	5.6	2.6	5.4	3.2
Indiana	5.4	2.4	4.5	3.4
lowa	4.3	2.7	4.6	2.4
Kansas	4.8	2.3	4.9	3.2
Kentucky	4.8	3.1	5.0	3.3
Louisiana	4.8	2.7	4.5	3.1
Maine	4.5	2.6	4.7	3.4
Maryland	4.9	3.2	4.6	3.4
Massachusetts	5.1	2.0	4.5	2.5
Michigan	4.7	2.8	4.9	3.0
Minnesota	4.5	2.5	5.0	3.1
Mississippi	4.4	2.9	3.8	3.8
Missouri	4.7	2.4	4.7	3.7
Montana	5.3	2.2	4.8	3.7
Nebraska	5.1	2.9	5.0	3.4
Nevada	5.5	2.3	5.2	4.0
New Hampshire	4.8	2.9	5.1	3.7
New Jersey	4.7	2.4	4.3	2.9
New Mexico	5.6	2.7	4.5	4.1
New York	4.7	2.6	5.2	2.7
North Carolina	5.2	3.1	4.5	3.2
North Dakota	5.4	2.5	5.2	4.3
Ohio	4.8	2.1	5.2	3.0
Oklahoma	4.6	2.4	47	3.5
Oregon	4.5	2.2	4.5	2.8
Pennsylvania	4.8	2.5	4.9	3.2
Rhode Island	4.9	2.5	5.2	2.7
South Carolina	4.8	4.2	4.3	3.3
South Dakota	5.4	2.5	4.9	3.8
Tennessee	5.7	2.1	5.4	3.5
Texas	5.1	2.6	4.1	38
Utah	4.7	2.4	4.5	2.8
Vermont	4.7	2.8	4.8	3.9
Virginia	4.7	2.6	4.9	3.1
Washington	4.8	2.5	4.1	2.6
West Virginia	5.5	2.6	4.7	3.2
Wisconsin	4.3	2.7	5.2	3.5
Wyoming	4.5	25	4.8	3.7
NATION	4.9	2.6	4.8	3.1

[^28]APPENDIX TABLE A-7
STUDENTS TAKING SCIENCE COURSES IN OCTOBER 1991 as a pericent of students in grades $7-8$

State	Student Membership (Grades 7-8)	\% General Sclence	\% Life Science	\% Earth Sclence	\% Physical Sclence	\% Integrated Sclence	$\begin{gathered} \text { Sum } \\ \text { Science } \end{gathered}$
Alabama	117.522	47\%	10\%	37\%	1\%	-\%	95\%
Alaska	17.322	-	-	-	-	-	-
Arizona	97,728	-	-	-	-	-	-
Arkansas	70,324	11	40	39	1	-	91
California	726,132	47	14	5	10	-	76 *
Colorado	87,157	28	30	12	19	-	90 *
Connecticut	67,492	30	30	9	21	3	95
Delaware	15.678	16	38	18	12	0.5	86 *
Dist. of Columbia	10,380	52	-	-	48	-	100
Florida	280,082	0.2	32	10	21	28	91
Georgia	180.220	-	--	-	-	-	-
Hawaii	23.078	11	43	15	-	0.1	68 *
Idaho	36.353	5	37	13	22	-	78 *
Illinois	263.610	-	-	-	-	-	-
Indiana	149,841	83	6	5	4	1	100
lowa	72.204	-	-	-	-	-	-
Kansas	65333	19	32	23	13	-	100
Kentucky	¢9,704	1	30	28	0.1	41	99
Louisiana	-	-	-	-	-	-	-
Maine	31.765	-	-	-	-	-	-
Maryland	104.747	-	-	-	-	-	-
Massachusetis	¢20.617	-	-	-	-	-	-
Michigan	228,748	-	-	-	-	-	65
Minnesota	116,022	-	33	24	8	-	65 *
Mississippi	78.434	97	-	-	-	-	97
Missouri	127.739	34	31	26	4	-	94
Montana	23,792	6	45	4	42	-	100
Nebraska	42,011	10	13	7	8	-	41 *
Nevada	31,179	21	24	5	15	1	65 *
New Hampshire	26,448	-	--	-	-	-	-
New Jersey	154,752	-	-	-	-	-	$\bar{\square}$
New Mexico	43,204	33	29	27	10	-	99
New York	369,304	14	40	14	23	-	90 *
North Carolina	166.638	-	0	. 1	0.3	98	98
North Dakota	18,057	-	51	49	-	-	100
Ohio	272,181	47	12	13	7	-	$81 *$
Oklahoma	87,968	7	-	16	2	54	84 *
Oregon	77.102	25	22	23	13	-	86 *
Pennsylvania	248,850	31	34	23	12	-	100
Puerto Rico	107.556	100	0	-	-	-	100
Rhode Island	20.584	-	-	-	-	-	9
South Carolina	98.776	1	50	47	1	-	99
South Dakota	20.195	-	-	-	-	-	-
Tennessee	127.584	93	-	-	-	-	93
Texas	517,811	3	48	46	-	3	99
Utah	69.781	-	31	28	18	0.1	$77 *$
Vermont	14,342	-	-	-	-	-	$\bar{\square}$
Virginia	147,384	-	45	-	48	-	93
Washington	130,054	-	-	-	-	-	-
West Virginia	51,314	8	16	21	2	-	47*
Wisconsin	118,193	30	19	12	9	-	76 *
Wyoming	15.630	30	26	6	14	0.4	$77 *$
SUM (36 states)		28\%	25\%	17\%	10\%	7\%	88\%

[^29]
APPENDIX TABLE A-8

STUDENTS TAKING MATHEMATICS COURSES IN OCTOBER 1991 AS A PERCENT OF STUDENTS IN GRADES 7-8

	Grade 7					Grade 8					
State	$\begin{aligned} & \text { Student } \\ & \text { Membership } \\ & \text { Grade? } 7 \end{aligned}$	\% Remedial Bath 7	$\begin{gathered} \% \\ \text { Regular } \\ \text { Math } 7 \end{gathered}$	$\%$ Accelerated Math 7	$\begin{gathered} \text { Sum } \\ \text { Math } \\ \% \text { Grade } 7 \end{gathered}$	Student Membership Grade 8	Remedial Math 8	$\begin{gathered} \% \\ \text { Regular } \\ \text { Math } \end{gathered}$	Enriched Math 8	Aigebra 1 Math 8	$\begin{gathered} \text { Sum } \\ \text { Math } \\ \% \text { Grade } 8 \end{gathered}$
Alabarna	60,915	2\%	76\%	15\%	93\%	56,607	2%	77\%	6\%	10\%	94\%
Alaska	8,892	-	-	-	-	8.430	-	-	-	-	-
Arizona	50.528	-	-	-	$\overline{\text { - }}$	47,200	-	77	-	4	$81 *$
Arkansas	35.797	-	49	16	65 *	34,527	-	77	-	4	81 *
Caliiomia	370,964	4	72	7	83*	355.168	3	66	3	14	86
Colorado	44,823	-	75	19	94	42,334	-	66	13	13	92
Connecticut	34,524	10	67	22	99	32,968	8	47	21	17	93
Delaware	8,175	6	59	18	$83 *$	7.503	8	43	22	16	89**
Dist. of Columbia	5.404	6	71	12	89 *	4,976	6	52	2	29	88*
Florida	144.717	8	62	25	95	135,365	9	53	20	9	90
Georgia	92.686	-	-	-	-	87,534	-	二	-	-	
Hawaii	11.808	13	88	2	103	11,270	13	83	0.3	7	103
Idaho	18,550	2	71	18	91	17.803	2	49	16	14	82 *
Illinois	135,954	-	-	-	-	127.656	-	-	-	-	
Indiana	76,002	-	85	5	(9)	73.839	-	78	7	9	94
lowa	36,755	-	-	-	$\bar{\square}$	35,449	-	65	13	21	
Kansas	33.390	-	78	20	98	31.943	$\overline{0.1}$	65	13	21	99
Kentucky	50,568	0.2	92	8	100	49,136	0.1	75	13	12	100
Louisiana	-		-	-	-						
Maine	16,086	-	-	-	-	15.679	-	-			
Maryland	54.300	-	-	-	-	50.447	-	-	-		-
Massachuselts	61.354	-	-	-	-	59.263	-	-		-	
Michigan	116.810	-	$\overline{52}$	-	52.	111,938	-	40	-	9	49 *
Minnesota	59,2 \%	-	52	16	52	36, 314	6	73	-	9	88 *
Mississippi	40.920	5	89	16	110.	37.514	1	64	-	12	76^{*}
Missouri	65,388	1	78	6	85^{*}	62.351	-			10	92
Montana	11,977	0.4	79	8	87^{*}	11.815	0.4	76 29	18	10	$5{ }^{\text {* * }}$
Nebraska	21,394	-	28	-	28°	20,617	7	53	22	13	96
Nevada	15.974	7	64	21	92	15,205	7	53			
New Hampshire	13.567	-	-	-	-	12.881	-	-	-	-	
New Jersey	79.196	-	$\bar{\square}$	-	100	7,556	7	56	17	21	100
New Mexico	22.007	6	88	5	100	21,197 180.718	7	79	0.1	11	96
New York	188,586	6	82	13	101	180,718	5	60	13	18	96
North Carolina	84.743	6	76	14	96	81,895	5	75		20	97
North Dakola	9.128	2	96	5	103.	8,929	2	5		13	81 *
Ohio	140,577	5	62	12	78 *	131,604	4	54	10	8	81.
Oklahoma	44.792	-	78	8	85°	43,176	-	73	21	${ }^{8}$	89 .
Oregon	39,230	-	68	21	90	37.872	-	51	21	16	58.
Pennsylvania	127.014	1	79	-	81^{*}	121,836	-	58	--	-	100
Puerto Rico	56.879	-	100	-	100	50.677	-	100			
Rhode island	10.531	-	-	-	100	10,053		78		14	106
South Carolina	51,424	14	91	-	106	47,352	13	78			
South Dakota	10,433	-	-	$\bar{\square}$	108	91.762		82	18	-	100
Ternessee	65.961	-	90	18	108	61,623	-			-	85*
Texas	266,704	-	98	41	98	251, 307	-	85 32	30	35	99
Ulah	36,667	3	58	41	102	33,114 7.029					-
Vermont	7.313	-	84	10	-	7,029 73.403		52	19	29	100
Virginia	73.981	6	84	10	100	73.403 63.150			1	-	
Washington	66.904	-	45	9	$\overline{56}$.	25,740	1	31	11	12	55*
West Virginia	25.574	1	45	9	96	25.750 57	,	75	7	12	96
Wiscensin	60,436	1	81	10 13	93 90	7.511	7	56	-	24	88 *
Wyoming	8.119	4	72	13	90	7.511					
SUM (36 states)		5\%	77\%	- 13%	95\%		5\%	67\%	10\%	13\%	95\%

[^30]Council or Cher State School Officers Slate Efication Assessmenl Center Washinglon DC 1993

STATE REQUIREMENTS IN MATHEMATICS AND SCIENCE
FOR HIGH SCHOOL GRADUATION (1992)

Note - No State Requirement
Source State Departments of Education, Mathematics ana Science Supervisors. Wintes, 1992 Councilot Chiet State School Dificers. State Education issessment Center. Washingtor: DC. 1993

APPENDIX TABLE A-10

PERCENTAGE OF STUDENTS IN EACH GRADE TAKING FIRST-YEAR BIOLOGY
(October 1991)
Biology, 1st Year (General)

state	\% of Grade 9	\% of Grade 10	\% of Grade 11	\% of Grade 12
Alabama	22	47	6	2
California	6	48	5	1
Connecticut	14	41	2	1
Dist. of Columbia	22	44	17	7
Florida	19	57	4	1
Idaho	6	75	2	1
Kentucky	24	44	23	13
New York	7	88	3	2
North Carolina	15	79	7	3
North Dakota	3	96	5	3
Ohio	26	51	11	6
Puerto Rico	. 1	67	16	3
South Carolina	13	79	1	1
Utah	13	42	15	7
West Virginia	7	83	11	6

Biology, 1st Year, Applied

Alabama	8	17	3	1
California	6	17	4	1
Connecticut	6	24	5	4
Dist. of Columbia	0	.2	.	.
Florida	3	10	2	1
Idaho	1	1	.1	.3
North Carolina	1	.4	.1	.
North Dakona	0	0	1	.2
South Carolina	.1	3	3	.1
Utah	1	2	2	
West Virginia	.1	1	.1	1

Source Slate Deparments ol Education. Data on Public Schools. Fall 1991. Caliorna. Fall 1990 NCES. CCD Fall Membership 1991
Council of Chuel Slate School Olficers. State Education Assessment Center Washnglon. OC. 1993

ESTIMATED PROPORTION OF STUDENTS ENTER'NG 9TH GRADE if 1988 TAKING SELECTED MATH AND SCIENCE COURSES

STATE	Student Membership 1988 (Grade 9)	$\begin{gathered} \text { Algebra } 1 \\ \% \end{gathered}$	$\begin{gathered} \text { Algebra } 2 \\ \% \end{gathered}$	$\begin{aligned} & \text { Biology } \\ & \text { 1st Year } \\ & \% \end{aligned}$	Chemistry 1st Year \%
Alabama	58.543	68\%	39\%	91\%	33\%
Alaska	7.468	-	-	-	-
Arizona	43,002	-	-	-	-
Arkansas	33,009	89	49	93	38
California	356.732	78	38	90	29
Colorado	41,346	68	44	80	39
Connecticut	33.688	64	53	93	56
Delaware	7,651	52	36	89	35
Dist. of Columbia	5.390	73	33	82	48
Florida	144.216	67	38	92	38
Georgia	90,716	-	-	-	-
Hawaii	11,727	51	28	92	36
Idaho	15.710	64	65	91	42
Illinois	130.730	-	-	-	--
Indiana	74.505	76	47	95	41
lowa	33,373	100	67	100	63
Kansas	29.962	91	59	100	46
Kentucky	48.563	78	53	97	43
Louisiana	60.966	-	-	-	-
Maine	16,255	78	62	83	59
Maryland	52,169	-	-	-	-
Massachusells	63.606	-	-	-	-
Michigan	123.745	-	-	$\overline{-}$	-
Minnesota	51,806	94	64	100	54
Mississippi	36,909	83	51	100	45
Missouri	63.567	87	54	86	39
Moniana	10.585	85	57	100	53
Nebraska	19,567	94	56	100	49
Nevada	12,463	78	46	100	45
New Hampshire	13.230	-	-	-	-
New Jersey	79,268	-	-	-	$\bar{\square}$
New Mexico	21,872	95	43	100	34
New York	202.098	73	37	95	48
North Carolina	89.256	65	43	91	42
North Dakota	8.505	100	73	100	64
Ohio	144,343	69	42	85	44
Oklahoma	42.824	89	54	90	33
Oregon	34,447	68	45	87	39
Pennsylvania	127,405	89	54	88	53
Puerto Rico	46,330	94	47	81	52
Rhode Island	10.228	-	-	-	-
South Carolina	52,835	57	40	84	40
Soullı Dakola	8.517	-	-	-	$-$
Tennessee	65.659	78	47	90	37
Texas	264,600	84	52	92	35
Utah	28.995	86	70	100	39
Vermont	6,350	63	49	79	47
Virginia	77.510	57	49	89	48
Washington	58,313	-	-	-	-
West Virginia	26.038	65	44	100	42
Wisconsin	59,077	100	56	100	56
Wyoming	6.941	87	58	85	35
SUM (38 states)		78\%	47\%	93\%	42\%

[^31]
8.

APPENDIX TABLE A-12
STUDENTS TAKING BIOLOGY AND CHEMISTRY COURSES IN OCTOBER 1991 AS A PERCENT OF STUDENTS IN GRADES $9-12$

STATE	Student Membership (Grades 9-12)	Blology 1st Year 9-12	Biology 1st Year Applied 9-12	$\begin{gathered} \text { Biology } \\ \text { 2nd Yyar } \\ \text { AP } \\ \% \\ 9-12 \end{gathered}$	$\begin{gathered} \text { Biology } \\ \text { 2nd YRar } \\ \text { Advanced } \\ \% \\ 9-12 \end{gathered}$	$\begin{gathered} \text { Biology } \\ \text { 2nd Yaar } \\ \text { Other } \\ \% \\ 9-12 \end{gathered}$	Chemistry 1st Year g-12	Chemistry 1st Year Applied g-12	$\begin{gathered} \text { Chemistry } \\ \text { 2nd Yazar } \\ \text { AP } \\ \% \text { \%-12 } \end{gathered}$	Chemistry 2nd Year Advanced \% 9-12
Alabama	195,531	20%	7%	1%	3%	2%	2 \%	8%	1\%	- \%
Alaska	29,556	-	-	-	-	-	-	-	-	-
Arizona	166.311	-	-	-	-	-	-	-	-	-
Arkansas	122,209	25	0	-	2	3	10	-	-	-
California	1,354,457	16	7	-	3	0.5	8	-	-	1
Colorado	156.273	21	-	-	5	-	10	-	-	2
Connecticut	125,575	15	0	0.5	3	3	11	4	0.3	0.4
Delaware	27,641	18	6	1	2	0.2	8	2	0.3	0.5
Dist. of Columbia	17,922	25	0.1	1	0	-	14	0.5	0	1
Fiorida	504.518	22	4	0.4	1	12	11	0.4	0.3	0.3
Georgia	309,439	-	-	-	-	-	-	-	-	-
Hawaii	43.495	21	4	0.2	1	0.4	10	-	0.5	-
Idaho	63,653	22	1	1	3	1	10	-	0.5	0.2
Illinois	486.990	-	-	-	-	-	-	-	-	-
Indiana	274.823	16	10	1	3	1	9	3	0.4	2
lowa	135.744	29	1	-	3	2	16	-	-	-
Kansas	117,951	26	3	1	4	-	10	2	1	1
Kentucky	176.459	27	-	1	5	2	12	-	0.3	1
Louisiana	-	-	-	-	-	-	-	-	-	-
Maine	58,898	23	-	-	-	-	16	-	-	-
Maryland	186,084	-	-	-	-	-	-	-	-	-
Massachusetts	230,165	-	-	-	-	-	-	-	-	-
Michigan	416,535	-	-	-	-	-	-	-	-	-
Minnesota	216.836	22	5	-	9	0	13	-	-	2
Mississippi	127.704	28	6	1	17	1	13	-	0.2	1
Missouri	229.211	23	1	-	8	4	11	-	-	2
Moniana	42,677	25	0.1	2	3	0.1	12	1	1	0.5
Nebraska	78.185	22	6	-	5	-	12	-	-	--
Nevada	54,076	21	6	0.3	5	1	10	-	0.3	0.4
New Hampshire	47,313	-	-	-	-	-	-	-	-	-
New Jersey	291,788	-	-	-	-	-	-	-	-	-
New Mexico	78.366	28	2	0.3	2	1	9	-	0.4	-
New York	714.244	27	0	1	0.4	2	14	-	0.5	0.1
North Carolina	302.825	27	0.2	1	4	1	12	-	0.4	1
North Dakota	33.435	27	0.1	-	8	1	16	-	-	1
Ohio	506,364	24	-	1	2	3	13	-	0.4	-
Oklahoma	155,510	25	-	0.2	5	5	9	-	02	1
Oregon	138,431	20	2	1	2	-	9	1	0.4	1
Pennsylvania	476,198	23	0.5	-	4	-	14	-	-	2
Puerto Rico	163,679	23	0	-	-	-	15	0	-	-
Rhode Island	37,661	-	-	-	-	-	-	-	-	-
South Carolina	171.431	25	1	1	2	1	12	0	0.3	1
South Dakota	34.727	--	-	-	-	-	-	-	-	-
Tennessee	2.29,080	22	4	0.4	2	1	11	-	0.2	0.3
Texas	889,388	23	5	-	2	2	10	-	-	1
Utah	125,578	23	2	2	2	1	9	0.3	1	0.2
Vermont	23,844	15	6	1		1	10	3	0.2	0.3
Virginia	270,218	23	3	i	3	-	13	1	1	1
Washington	236,546	-	-	-	-	-	-	-	-	--
West Virginia	95,457	27	0.3	0.2	5	3	12	1	1	1
Wisconsin	231,732	27	1	1	4	0.4	11	3	1	1
Wyoming	28,096	21	0.3	0.3	4	-	8	0.2	0.1	1
SUM (39 states)		22 \%	3%	0.4 \%	3%	2%	11 \%	1%	0.2 \%	1%

[^32]STUDENTS TAKING PHYSICS AND EARTH SCIENCE COURSES IN OCTOBER 1991 AS A PERCENT OF STUDENTS IN GRADES 9-12

State	Student Membership (Grades 9-12)	Physics 1st Year 9-12	Physics 1st Year Applied $9-12$	$\begin{gathered} \text { Physics } \\ 2 n d \text { fear } \\ A P \\ \% \\ 9-12 \end{gathered}$	Physics 2nd Year Advanced ${ }_{9}^{\%} 12$	Earth Science 1st Year General \% 9-12	Earth Science 1st Year Applied ${ }_{9}^{\%}-12$	$\begin{gathered} \text { Earth Science } \\ \text { 2nd Yaar } \\ \%-12 \end{gathered}$
Alabama	195.531	2%	1\%	0.3 \%	0.2 \%	0.3%	-\%	- \%
Alaska	29.556	-	-	-	-	-	-	-
Arizona	166.311	-	-	-	-	-	-	-
Arkansas	122,209	3	-	-	0	3	-	0.2
California	1,354.457	3	-	-	0.5	2	-	1
Colorado	156.273	5	-	-	0.5	10	-	1
Connecticut	125,575	5	4	0.3	0.2	8	1	1
Delaware	27,641	3	1	0.1	0.2	5	1	. 1
Dist. of Columbia	17.922	3	-	0.2	-	1	-	0.3
Florida	504.518	4	0.1	0.3	0.3	12	2	2
Georgia	309.439	-	-	-	-	-	-	-
Hawaii	43.495	3	$\underline{2}$	0.2	-	7	1	0.1
Idano	63,653	3	-	0.1	-	11	5	0.2
Illinois	486,990	-	-	-	-	-	-	-
Indiaria	274,823	3	1	0.3	0.3	5	2	1
lowa	135,744	7	-	-	0.2	8	-	-
Kansas	117,951	4	1	0.1	0.3	6	0.3	0.4
Kentucky	176.459	3	-	0.2	0.1	1	-	-
Louisiana	-	-	-	-	-	-	-	-
Maine.	58.898	12	-	-	-	-	-	-
Maryland	186,084	-	-	-	-	-	-	-
Massachuselts	230,165	-	-	-	-	-	-	-
Michigan	416,535	-	-	-	-	-	-	-
Mirnesota	216,836	6	-	-	1	2	1	0.2
Mississippi	127,704	4	-	0.1	0.1	-	-	0.2
Missouri	229.211	4	-	-	0.4	3	-	1
Moniana	42,677	6	0.1	0	0.2	19	. 1	1
Nebraska	78,185	5	0.3	-	-	8	-	-
Nevada	54.076	3	1	01	0.4	15	1	0.3
New Hampsthire	47.313	-	-	-	-	-	-	-
New Jersey	291,788	-	-	-	--	-	-	-
New Mexico	78,366	3	1	0.4	-	2	-	1
New York	714,244	6	-	1	1	16	-	1
North Carolina	302.825	3	-	0.1	0.2	3	-	1
North Dakota	33.435	6	0.2	-	0	0.1	-	1
Onio	506,364	5	-	0.2	-	5	-	1
Oklahoma	155.510	2	01	0.2	0.1	1	-	0.2
Oregon	138,431	4	1	0.3	0.3	4	0.2	0.2
Pennsylvania	476.198	7	-	-	2	6	-	1
Fuerto Rico	163,679	7	-	-	-	9	-	-
Rhode Island	37,661	-	-	-	-	-	-	-
South Carolina	171.431	3	1	0.1	0.1	0.1	-	-
South Cakota	34.727	-	-	-	-	-	-	-
Tennessee	229.080	3	-	0.2	-	2	-	-
Texas	889,388	3	-	-	0.5	1	-	1
Utah	125.578	4	1	0.4	0.3	16	0.1	0.2
Vermont	23.844	6	1	0.1	0.1	11	2	1
Virginia	270.218	6	. 1	0.2	0.3	24	1	1
Washington	236.546	-	-	-	-	-	-	-
West Virginia	95.457	3	0.1	0	1	1	0.3	. 1
Wisconsin	231,732	6	1	0.3	1	5	2	0.4
Wyoming	28,096	3	1	-	-	9	2	-
SUM (39 states)		4%	0.2 \%	0.1 \%	0.4 \%	6%	0.3 \%	1 \%

[^33]APPENOIX TABLE A-14
STUDENTS TAKING GENEHAL, PHYSICAL, INTEGRATEO, AND OTHER SCIENCE COURSES, AND COMPUTER SCIENCE COURSES IN OCTOBER 1991 AS A PERCENT OF STUDENTS IN GRAOES 9-12

stafe	$\begin{gathered} \text { Sludent } \\ \text { Membership } \\ \text { (Grades 9-12) } \end{gathered}$	$\begin{gathered} \text { General } \\ \text { Science } \\ \% \\ 9-12 \end{gathered}$	Physical Science 9-12	Integrated Science 9-12	$\begin{gathered} \text { Other } \\ \text { Sclence } \\ \% \\ 9-12 \end{gathered}$	Computer Science Prog. 1 9-12	Advanced Comp. Sci./ Prog. II $9-12$ 9-12	Comp. Sci. Adranced Placement 9-12	$\begin{gathered} \text { Comp. Sci././ } \\ \text { Comp. Prog. } \\ 7-8 \end{gathered}$
Alabama	195,531	2%	22 \%	- \%	0.1 \%	2%	-\%	- \%	0.3 \%
Alaska	29,556	-	-	-	-	-	-	-	-
Arizona	166,311	-	-	-	-	-	-	-	-
Arkansas	122.209	7	25	-	0.4	4	-	-	-
California	1,354,457	3	12	-	3	1	-	-	8
Colorado	156,273	4	7	-	4	4	1	-	9
Connecticut	125.575	7	7	0.4	1	2	0.2	0.1	2
Delaware	27,641	1	12	1	2	3	1	0.2	38
Dist. of Columbia	17,922	24	-	-	1	5	0.2	-	4
Florida	504,518	2	12	. 1	0.2	2	0.4	0.1	1
Georgia	309.439	-	-	-	-	-	-	-	-
Hawaii	43.495	5	17	1	4	1	0.1	. 1	4
Idaho	63,653	1	8	-	2	1	0.3	0.1	7
lilinois	486,990	-	-	-	-	-	-	-	-
Indiana	274,823	5	8	2	-	1	0.2	-	0.4
lowa	135,744	10	11	-	0.4	1	0.2	-	-
Kansas	117,951	8	13	-	4	9	2	02	30
Kentucky	176.459	-	12	12	0.4	2	01	0.3	. 1
Lovisiana	-	-	-	-	-	-	-	-	-
Maine	58,898	-	-	-	-	-	-	-	--
Maryland	186,084	-	-	-	-	-	-	-	-
Massachusetts	230,165	-	-	-	-	-	-	-	-
Michigan	416,535	-	-	-	-	-	-	-	-
Minnesota	216,836	-	8	-	-	3	-	-	-
Mississippi	127,704	9	-	-	0.1	3	0.4	01	2
Missouri	229,211	7	18	-	1		1	-	1
Montana	42,677	2	3	2	. 1	7	2	0	1
Nebraska	78.185	6	11	-	3	6	1	-	4
Nevada	54,076	6	3	0.2	0.3	3	1	0.1	2
New Hampshire	47,313	-	-	-	-	-	-	-	-
New Jersey	291,788	-	-	-	-	-	-	-	-
New Mexico	78.366	7	14	-	1	4	-	0.1	-
New York	714,244	4	8	-		3	-	0.3	18
North Carolina	302,825	0.3	24	-	1	6	-	0.1	2
North Dakota	33,435	-	29	-	1	5	1	-	-
Ohio	506,364	12	7	-	0.2	7	-	0.1	15
Oklahoma	155.510	4	19	-	4	4	1	0.1	-
Oregon	138.431	6	10	-	6	6	1	0.3	16
Pennsylvania	476.198	7	8	-	2	7	2	0	52
Puerto Rico	163.679	21	0.3	-	-	-	-	--	-
Rhode Island	37,661	-	-	-	-	-	-	-	-
South Carolina	171.431	6	23	-	0	2	0.1	02	-
South Dakota	34.727	-	-	-	-	-	-	-	--
Tennessee	229,080	4	20	-	1	-	-	-	-
Texas	889,388	-	23	1	01	04	0	. 1	-
Utah	125.578	-	4	. 1	6	2	0.2	. 1	3
Vermont	23,844	3	4	1	5	2	1	. 1	
Virginia	270.218	-	1	-	1	1	-	. 4	-
Washington	236,546	-	-	-	-	-	-	-	-
West Virginia	95.457	6	19	0	0.4	-	-	-	-
Wiscl , Isin	231, ${ }^{\text {a }}$,	6	14	-	6	6	3	0.3	-
Wyoming	28,096	5	7	1	3	6	2	0.2	15
SUM (38 states)		4 \%	13 \%	0.3%	2%	3 \%	0.4%	0.1 \%	12 \%

[^34]Source State Deparments of Edication. Data on Public Schoors. Fall 1991 Cahtorna. Falh 1990. ICES. CCD Fan Membership 1991
Council ol Chief Slate School Ollicers. State Education Assessment Center. Washriton DC. 1993

APPENDIX TABLE A-15
STUDENTS TAKING REVIEW MATHEMATICS (E.G., GENERAL MATH) AND INFORMAL MATH (E.G., PRE-ALGEBRA) IN OCTOBER 1991 AS A PERCENT OF STUDENTS IN GRADES 9-12

State	Student Membership (Grades 9-12)	$\begin{gathered} \text { General } \\ \text { Remedial } \\ \text { (Level } 1 \text {) } \\ \% \\ 9-12 \end{gathered}$	Consumer. Applied (Level 2) \% 9-12	$\begin{gathered} \text { Genera! } \\ \text { (Level } 3 \& 4 \text { 4) } \\ \% \% \\ 9-12 \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Sum } \\ \text { Review Math } \\ \% \\ \%-12 \end{array} \end{gathered}$	Pre-Alyebra (Level 1) $\%-12$	Basic Geometry \& Algebra 2 (Level 2-3) ${ }_{9}^{\%}-12$	$\begin{gathered} \text { Sum } \\ \text { Intormal Math } \\ \% \\ 9-12 \end{gathered}$
Alabama	195.531	11 \%	10%	-- \%	21 \%	4%	- \%	4%
Alaska	29.556	-	-	-	-	-	-	-
Arizoná	166.311	-	-	-	-	-	-	-
Arkansas	122.209	21	0	4	26	8	1	8
Calitornia	1,354,457	15	2	-	17	7	-	7
Colorado	156.273	5	4	-	9	11	-	11
Connecticut	125.575	7	5	3	14	11	9	20
Delaware	27.641	6	5	3	15	9	4	13
Dist. of Columbia	17,922	4	1	-	5	13	6	19
Florida	504.518	12	16	1	29	12	1	13
Georgia	309.439	-	-	-	-	-	-	-
Hawaii	43.495	14	22	1	37	12	4	16
Idaho	03.653	5	1	1	8	--	-	-
Illinois	486,990	-	-	-	-	-	-	-
Indiana	274.823	8	6	-	14	7	1	8
lowa	135,744	7	6	7	19	6	-	6
Kansas	117,951	3	4	1	8	13	3	16
Kentucky	176.459	8	2	4	14	10	4	14
Louisiana	-	-	-	-	-	-	-	-
Maine	58,898	-	-	-	-	-	-	-
Maryland	186.084	-	-	-	-	-	-	-
Massachusetts	230.165	--	-	-	-	-	-	-
Michigan	416.535	-	-	-	-	-	-	-
Minnesota	216,836	6	3	-	10	-	-	-
Mississippi	127.704	9	7	-	16	8	-	8
Missouri	229.211	11		-	15	7	-	7
Moniana	42,677	4	3	1	8	10	1	11
Nebraska	78.185	14	2	-	17	-	-	-
Nevada	54.076	5	11	0.1	17	15	0.2	15
New Hampshire	47.313	-	-	-	-	-	-	-
New Jersey	291,788	-	-	-	-	-	-	-
New Mexico	78,356	13	5	-	18	13	-	13
New York	714,244	8	4	0.3	13	8	3	12
North Carolina	302.825	9	7	1	17	11	-	11
North Dakota	33.435	2	4	-	6	5	-	5
Ohio	506.364	11	0	7	19	8	-	8
Oklahoma	155.510	6	2	-	8	7	3	11
Oregon	138.431	4	3	3	11	13	5	18
Pemnsylvania	476,198	8	7	1	16	15	-	15
Puertu Rico	163.679	--	-	41	41	-	-	-
Rhode Island	37,661	-	-	-	-	-	-	-
South Carolina	171.431	21	8	4	33	10	-	10
South Dakota	34.727	-	-	-	-	-	-	-
Tennessee	229.080	6	5	1	11	10	-	10
Texas	889,388	4	5	-	9	15	6	22
Utah	125.578	3	4	1	8	15	-	15
Verrnont	23,844	4	5	3	11	7	4	11
Virginia	270.218	8	6	0	14	12	3	15
Washington	236.546	-	-	-	-	-	-	-
West Virginia	95.457	8	18	2	29	5	-	5
Wisconsin	231.732	9	4	3	15	-	-	-
Wyoming	28.096	5	4	-	9	3	-	3
SUM (38 states)		9%	5 \%	2 \%	16%	10 \%	2 \%	12 \%

[^35]APPEND!X TABLE A-16
STUDENTS TAKING FORMAL MATHEMATICS (ALGEBRA-CALCULUS) IN OCTOBER 1991 AS A PERCENT OF STUDENTS IN GRADES 9-12

STATE

Aigebra 1/ Geometry/ Algebra 2/ Trigonometry Integrated Math 1 Integrated Math 2 Integrated Math 3 Pre-Calculus $\begin{array}{cccc}\text { (Level 1) } & \text { (Level 2) } & \text { (Level 3) } & \text { (Level 4) } \\ \% & \% & \% & \%\end{array}$ 195.531
29.556 Alaska
Arizona
Arkansas
166,311
122,209
1.354 .457

Colorado
Connecticut
Delaware
Dist. of Columbia
$\begin{array}{lr}\text { Florida } & 504.518 \\ \text { Georgia } & 309,439 \\ \text { Hawaii } & 43,495\end{array}$
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Lonisiana
Maine
Maryland
Massachuset
Michigan
Minnesola
Mississippi
Missouri
Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Puerto Rico
Rhoode Island

South Carolina	171,431
South Dakota	34,727
Tennessee	229.080
Texas	889.388
Utah	125,578
Vermont	23,844
Virginia	270.218
Washington	236.546
West Virginia	95.457
Wisconsin	231,732
Wyoming	28,096

SUM (39 states)
Note - - Data not avalable

Ceuncil ol Chiel Slote School Offrers State Education Assessment Center Washngion DC 1993

APPENDIX TABLE A-17
PERCENT CHANGE IN STUDENTS TAKING HIGi' SÊHOOL MATHEMATICS BY STATE GRADUATION REQUIREMENTS: 1990 TO 1992

Algebra $1 /$ Integrated Math 1:
\% Change

Algebra $2 /$

7
7
7
-2
4
7
4
3
$x_{1}+2$
13
3
4.3

4
-2
-2
9
6
5
-1
12
3
3
3
7
3
3.9

17
3
5
10
10
6.0
integrated Math 3:
\% Change
Calculus: \% Change

Texas

2 Credís			
Alabama	13	4	1
California	-3	-2	0
Hawaii	6	-2	0
Maine	7	9	-
Mississippi	10	6	1
Missouri	0	5	3
New York	4	-1	1
North Dakota	0	12	3
Ohio	6	3	2
Oklahoma	0	3	-2
Tennessee	2	3	1
West Virginia	6	7	5
Average	$\mathbf{4 . 3}$	$\mathbf{3 . 9}$	$\mathbf{1 . 3}$

Local Board Policius			
lowa	3	17	3
Minnesola	5	7	1
Nebraska	10	4	8
Average	6.0	7.0	4.0

[^36]
APPENDIX TABLE A-18

PERCENT CHANGE IN STUDENTS TAKING HIGH SCHOOL SCIENCE
BY STATE GRADUATION REQUIREMENTS 1990-1992

STATE	$\begin{aligned} & \text { Blology: } \\ & \text { \% Change } \end{aligned}$	Chemistry: \% Change	Physics: \% Change
2.5 to 3 Credits			
Arkansas	0	10	1
Florida	0	3	2
Pennsylvania	0	3	2
Virginia	0	2	2
Average	0	4.5	1.8
1 to 2 Credits			
Alabama	0	5	-5
California	-2	0	-1
Connecticut	0	1	1
Hawaii	7	1	3
Kentucky	0	6	1
Maine	1	11	-
Mississippi	0	2	0
Missouri	4	5	2
New Mexico	0	7	i
New York	0	2	0
North Dakota	0	13	4
Ohio	-2	4	2
Oklahoma	2	2	1
South Carolina	0	5	1
Tennessee	7	4	2
Texas	0	6	3
West Virginia	0	8	2
Average	1.0	4.8	1.0
Local Board Policies			
lowa	0	7	3
Minnesota	0	8	2
Nebraska	0	4	3
Average	0	6.3	2.6

[^37]
APPENDIX B

Table B-1 Mathematics Teachers in Grades 9—12, by Time Assigned 84
Table B-2 Biology and Chemistry Teachers in Grades 9-12, by Time Assigned 85
Table B-3 Physics and Earth Science Teachers in Grades 9-12, by Time Assigned 86
Table B-4 General and Physical Science Teachers in Grades 9-12, by Time Assigned 87
Table B-5 Integrated and Computer Science Teachers in Grades 9-12, by Time Assigned 88
Table B-6 Mathematics and Science Teachers in Grades 7-8, by Time Assigned 89
Tab'e B-7 New Math and Science Teachers in Large City Districts 90
Table B-8 Secondary Science and Mathematics Teachers: State Cerification Requirements 91
Table B-9 Middle Grades Teachers: State Certification Requirements in Science and Mathematics 92
Table B-10 Certification Status of Math Teachers in Grades 7-8, by Time Assigned 93
Table B-11 Certification Status of Science Teachers in Grades 7-8, by Time Assigned 94
Table B-12 Certification Status of Mathematics Teachers in Grades 9-12, by Time Assigned 95
Table B-13 Certification Status of Biology Teachers in Grades 9-12, by Time Assigned 96
Table B-14 Certification Status of Chemistry Teachers in Grades 9-12, by Time Assigned 97
Table B-15 Certification Status of Physics Teachers in Grades 9-12, by Time Assigned 98
Table B-16 Certification Status of Earth Science Teachers in Grades 9-12, by Time Assigned 99
Table B-17 New Minority and Female Teachers in Math and Science (Grades 9-12, October 1991) 100
Table B-18 Certification of High School Math and Science Teachers in Large City Districts 101
Table B-19 Percentag of Grade 8 Students with Teachers Who Have Mathematics Coursework in Seven Recommended Areas of Mathematics 102
Table B-20 Standard Errors for Table 26, Percentage of Mathematics and Science Teachers with Major in Field 103
Table B-21 Standard Errors for Table 27, Average Class Size in Mathematics and Science and Percent Classes Over 30 Students (Grades 9-12) 104

APPENDIX TABLE B-1

MATHEMATICS TEACHERS IN GRAUES 9-12, BY TIME ASSIGNED

		Mathematics	
State	Total	$\begin{gathered} \text { Main } \\ \text { Assignment } \\ \hline \end{gathered}$	Other Asslgnment $\%$
Alabama	1,608	51\%	49\%
Alaska	--	-	-
Arizona	1.050	96	4
Arkansas	709 *	-	-
California	9,837	69	31
Colorado	1,275	91	9
Connecticut	1,545	81	19
Delaware	192 *	-	-
Dist. of Columbia	-	-	-
Florida	8,880	71	29
Georgia	-	-	-
Hawaii	578	62	38
Idaho	747	38	62
Ilitnois	3.799	97	3
Indiana	2.270	84	16
lowa	1,534	-	-
Kansas	1,224	$\overline{-}$	-
Kentucky	1,568	86	14
Louisiana	--	-	-
Maine	825	-	-
Maryland	-	-	-
Massachusetts	3,329 *	-	-
Michigan	3,380	91	9
Minnesota	1.787	76	24
Mississippi	1,142	83	17
Missouri	2,0<̌	84	16
Montana	506	79	21
Nebraska	-	-	
Nevada	474	69	31
New Hampshire	471	-	-
New Jersey	3.677	91	9
New Mexico	716	82	18
New York	7,555	73	27
North Carolina	3,318	77	23
North Dakota	468	65	35
Ohio	4,210	81	19
Oklahoma	1.701	91	9
Oregon	i.207	87	13
Pennsylvania	6.443 *	96	4
Puerto Rico	1.562	66	34
Rhode island	413	97	3
South Carolina	1,845	87	13
South Dakota	467	68	32
Tennessee	1,892	78	22
Texas	10,612	74	26
Utah	1,243	66	34
Vermont	278	78	22
Virginia	-	-	-
Washingtori	-	$\bar{\square}$	2
West Virginia	1,019	98	2
Wisconsin	-	$\bar{\square}$	-
Wyoming	275	85	15
NATION	116,849	79\%	21\%

-Arkansas. Delaware Main assignment only. Massachusetts k-12 Pennsylvania 7-12
Nore Main Assignment = Hatl ime ol more assigned io subject or primary assignment Other = Less ihan hall time assigned to sublect National lotals include imputation lor nonreperting slates - Data not avariable

Source State Departments of Education. Data on Public Schnots. Fall 1991. Callornia. Fall 1990
Council at Chiel State School Olficers Slate Education Assessment Center, Washunglon. DC. 1993

APPENDIX TABLE B-2
BIOLOG r AND CHEMISTRY TEACHERS IN GRADES 9-12, BY TIME ASSIGNED

		Biology			Chemistry	
STATE	Total	$\begin{gathered} \text { Main } \\ \text { Assigntient } \\ \% \end{gathered}$	$\begin{gathered} \text { Dther } \\ \text { Assignment } \\ \% \end{gathered}$	Total	$\underset{\text { Assignment }}{\text { Main }}$	$\begin{gathered} \text { Other } \\ \text { Assignment } \\ \% \end{gathered}$
Alabama	826	27\%	73\%	378	9\%	91\%
Alaska	-	-	-	-	-	-
Arizona	934 *	95	5	-	-	-
Arkansas	629	44	56	306	33	67
California	3,887	59	41	1,365	54	46
Colorado	1,131 *	91	9	-	--	-
Connecticut	679	62	38	375	58	42
Delaware	51 *	-	-	16 *	-	-
Dist. of Columbia	-	-	-	-	-	-
Florida	2,427	58	42	691	60	40
Georgia	-	-	-	-	-	-
Hawaii	194	54	46	59	64	36
Idaho	2.53	46	54	131	34	66
Illinois	1,369	96	4	687	99	1
Indiana	1,015	75	25	507	72	28
lowa	746	-	-	426	-	-
Kansas	632	-	-	391	-	-
Kentucky	716	70	30	344	59	41
Louisiana	-	-	-	-	-	-
Maine	363	-	-	211	-	-
Marylard	-	-	-	-	-	-
Massachusetts	741	-	-	441	-	-
Michigan	863	86	14	438	74	26
Minnesota	741	67	33	501	42	58
Mississippi	792	68	32	548	40	60
Missouri	1,038	65	35	588	43	57
Montana	251	45	55	167	32	68
Nebraska	-	-	-	-	-	-
Nevada	211	59	41	77	57	43
New Hampshire	181	-	-	67	--	-
New Jersey	922	93	7	448	91	9
New Mexico	313	62	38	143	38	62
New York	5.047	66	34	1,835	65	35
North Carolina	1.368	62	38	571	63	37
North Dakota	261	30	70	176	17	83
Ohio	1,797	69	31	1,014	60	40
Oklahoma	914	66	34	463	31	69
Oregor,	362	80	20	-	-	-
Pennsylvaria	1,939	87	13	1,065	85	15
Puerto Rico	414	93	7	231	85	15
Rhode Island	153	88	12	88	81	19
South Carolina	664	69	31	346	61	39
South Dakota	228	43	57	155	21	79
Tennessee	697	66	34	362	64	36
Texas	4,367	58	42	1,682	51	49
Utah	456	67	33	124	62	38
Vermont	127	72	28	80	56	44
Virginia	-	-	-	-	-	-
Washington	-	-	--	-	-	-
West Virginia	381	84	16	162	71	29
Wisconsin	-	-	-	-	-	-
Wyoming	147	76	24	88	67	33
NATION	46.864	68\%	32%	21,277	59\%	41\%

[^38]Source State Departments of Education, Data on Dubtic Schoois. Fall. 1991, (ialilorna, Fall 1990
Council ol C'thel Stale Schoo' Othcers. Statc Education Assessmeitl Center, Washington. DC. 1993

APPENDIX TABLE B-3
PHYSICS AND EARTH SCIENCE TEACHERS IN GRADES 9-12, BY TIME ASSIGNED

		Physics			Earth Science	
State	Total	$\underset{\substack{\text { Main } \\ \text { Assignment }}}{\text { M }}$	$\begin{aligned} & \text { Other } \\ & \text { Assignment } \\ & \% \end{aligned}$	Total	$\underset{\substack{\text { Main } \\ \text { Assignment }}}{\text { Mas. }}$	$\begin{aligned} & \text { Other } \\ & \text { Assignment } \\ & \% \end{aligned}$
Alabama	286	2\%	98\%	21	5\%	95\%
Alaska	-	-	-	-	-	-
Arizona	-	-	-	-	-	$\overline{-}$
Arkansas	238	6	94	64	55	45
California	922	26	74	550	32	68
Colorado	-	-	-	-	-	-
Comnecticut	263	36	64	257	50	50
Delaware	30 *	-	-	8	-	-
Dist. of Columbia	-	-	-	-	-	-
Florida	401	49	51	1,323	40	60
Georgia	-	-	-	-	$\overline{35}$	$\overline{-}$
Hawaii	44	48	52	92	35	65
Idaho	91	11	89	148	39	61
Illinois	321	98	2	204	90	10
Indiana	366	31	69	287	62	38
lowa	389	-	-	225	-	-
Kansas	274	-	$\overline{8}$	98	$\overline{-}$	$\overline{78}$
Kentucky	219	12	88	$5!$	22	78
Louisiana	-	-	-	-	-	-
Maine/	177	-	-	162	-	-
Maryland	-	-	-	30	-	-
Massachusetis	261	-	-	309	-	-
Michigan	261	52	48	130	60	40
Minnesola	375	26	74	111	29	71
Mississippi	197	10	90	7	0	100
Missouri	378	15	85	162	43	57
Montana	134	12	88	175	35	65
Nebraska	-	-	-	-	-	-
Nevada	50	28	72	91	55	45
New Hampshire	37	-	-	26	-	-
New Jersey	163	88	12	327	97	
New Mexico	98	14	86	41	24	76
New York	1,089	53	47	2.831	60	40
North Carolina	351	18	82	328	21	79
North Dakota	124	5	95	8	13	88
Ohio	748	27	73	410	53	47
Oklahoma	243	12	88	65	20	80
Oregon	-	-	-	778	$\overline{81}$	-
Pennsy/vania	693	70	30	778	81	19
Puerto Rico	119	75	25	94	84	16
Rhode Island	52	83	17	10	70	30
South Carolina	232	18	82	2	50	50
South Dakola	123	8	92	28	39	61
Tennessee	237	15	85	71	23	77
Texas	1.043	21	79	334	36	64
Utah	80	34	66	344	48	52
Vermont	73	48	52	77	43	56
Virginia	-	-	-	-	-	-
Washinglon	-	-	-	-	-	$\bar{\square}$
West Virginia	108	20	80	283	74	26
Wisconsin	-	-	$\bar{\square}$	-	$\bar{\square}$	$\overline{7}$
Wyoming	71	61	39	63	63	37
NATION	13,610	34\%	66\%	12,273	54\%	46\%

[^39]Source State Depariments of Educalion Data on Public Schools, Fall. 1991. Calitornia. Fall 1990
Council of Chief State School Oiticers. State Education Assessr'ent Center. Washnglon DC 1993

APPENDIX TABLE B-4
GENERAL AND PHYSICAL SCIENCE TEACHERS IN GRADES 9-12, BY TIME ASSIGNED

		General Science			Physical Science	
State	Total	$\underset{\text { Assignment }}{\substack{\text { Main } \\ \hline}}$	$\begin{gathered} \text { Other } \\ \text { Assignment } \\ \% \end{gathered}$	Total	$\begin{aligned} & \text { Main } \\ & \text { Assignment } \\ & \% \end{aligned}$	\qquad
Alabama	72	0\%	100\%	649	3\%	97\%
Alaska	-	-	-	-	-	-
Arizona	-	--	-	-	-	-
Ȧrkansas	208	28	72	488	46	54
California	602	29	71	2.147	39	61
Colorado	-	-	-	-	-	-
Connecticut	214	29	71	210	23	77
Delaware	12*	-	-	-	-	--
Dist. of Columbia	-	-	-	-	--	-
Florida	467	12	88	1,204	32	68
Georgia	-	-	-	-	\cdots	
Hawaii	136	16	84	121	47	53
Idaho	21	14	86	96	27	73
Illinois	500	89	11	206	96	4
Indiana	294	34	66	386	42	58
lowa	436	-	-	301	-	-
Kansas	474	-	-	127	-	-
Kentucky	-	-	-	357	42	58
Loussiana	-	-	-	-	-	-
Maine	161	-	-	157	-	-
Maryland	-	-	-	-	-	-
Massachusetts	1,277	-	-	-	-	-
Michigan	1.622	79	21	-	-	-
Minnesoia	-	-	-	255	48	52
Mississippi	--	-	-	-	-	-
Missouri	374	29	71	661	41	59
Montana	30	3	9 ?	48	13	88
Nebraska	-	-	-	-	-	-
Nevada	60	50	50	21	29	71
New Hampshire	109	-	-	24	-	-
New Jersey	387	95	5	529	95	5
New Mexico	107	37	63	160	46	54
New York	1.443	49	51	2,146	55	45
North Carolina	49	6	94	1,213	49	51
North Dakota	-	-	-	248	19	81
Ohio	1.208	41	59	573	48	52
Oklahoma	182	25	75	547	50	50
Oregon	404	85	15	273	70	30
Pennsylvaria	2.526	78	22	238	57	43
Puerto Rico	316	58	42	9	44	56
Rhode Island	123	73	27	19	58	42
South Carolina	213	32	68	572	51	49
South Dakota	28	14	86	183	24	76
Tennessee	189	36	64	617	57	43
Texas	-	-	--	3,558	47	53
Utah	2	50	50	142	48	52
Vermont	23	13	87	42	43	55
Virginia	-	-	-	-	-	-
Washington	-	-	-	$\bar{\square}$	-	-
West Virginia	129	57	43	90	48	52
Wisconsin	-	-	-	-	-	-
Wyoming	71	61	39	53	72	28
NATION	14,469	57\%	43\%	18,670	46\%	54\%

[^40][^41] Cuumill ol Chiel State School Ollicers Slate Educalion Assessment Center. Washington. DC. 1993

APPENDIX TABLE B-5
INTEGRATED AND COMPUTER SCIENCE TEACHERS IN GRADES 9-12, BY TIME ASSIGNED

		Integrated Sclen			Computer Sclence	
State	Total	$\underset{\substack{\text { Malin } \\ \text { Assignment }}}{\substack{\text { and }}}$	Assignment \%	Total	$\underset{\substack{\text { Main } \\ \text { Assignment }}}{\substack{\text { M } \\ \hline}}$	$\begin{gathered} \text { Other } \\ \text { Assignment } \\ \% \end{gathered}$
Alabama	-	-\%	-\%	114	1\%	99\%
Alaska	-	-	-	-	--	-
Arizona	-	-	-	80	69	31
Arkansas	-	-	-	155	25	75
Calitornia	-	-	-	478	16	84
Colorado	-	-	-	-	-	-
Connecticut	15	13	87	141	16	84
Delaware	-	-	-	4*	-	-
Dist. of Columbia	-	-	-	-	-	$\overline{7}$
Florida	7	14	86	338	25	75
Georgia	-	-	-	-	-	7
Hawaii	22	5	95	29	21	79
Idaho	-	-	-	161	18	82
Illinois	-	-	$\overline{70}$	539	65	35
Indiana	122	24	76	161	24	76
lowa	-	-	-	159	-	-
Kansas	-	-	$\bar{\square}$	300	-	$\bar{\square}$
Kentucky	397	34	66	131	19	81
Louisiana	-	-	-	-	-	-
Maine	-	-	-	195	-	-
Maryland	-	-	-	-	-	-
Massachusetts	-	-	-	-	$\overline{5}$	-
...ichigan	-	-	-	319	54	46
Minnesota	-	-	-	222	12	88
Mississippi	-	-	-	113	27	73
Missouri	-	-	$\bar{\square}$	220	34	66
Montana	2	0	100	0	-	-
Nebraska	-	-	-	-	-	$\overline{7}$
Nevada	-	-	-	37	30	70
New Hampshire	-	-	-	-	-	-
New Jersey	-	-	-	294	57	43
New Mexico	-	-	-	75	27	73
New York	-	-	-	1,716	35	65
Noith Carotina	--	-	-	498	43	57
North Dakota	-	-	-	97	5	95
Ohio	-	-	-	777	52	48
Oklahoma	-	-	-	295	32	68
Oregon	138	75	25	169	37	63
Pennsylvania	63	62	38	-	-	-
Puerto Rico	-	-	-	-	08	-
Rhode Island	-	-	--	34	68	32
South Carolina	-	-	-	112	31	69
South Dakota	-	-	-	279	31	69
Tennessee	-	-	-	39	13	87
Texas	4	100	0	613	37	63
Utah	0	-	--	107	50	50
Vermont	10	0	100	43	40	63
Virginia	-	-	-	-	-	-
Washington	-	-	-	-	-	-
West Virginia	0	-	-	0	-	-
Wisconsin	-	-	$\bar{\square}$	-	-	\cdots
Wyoming	13	77	23	90	54	46
NATION	793	41\%	59\%	9,134	37\%	63\%

[^42]Source. State Depatments ol Education Data on Public Schools, Fall 1991. California, Fall 1990
Council ol Chiel State School Ofticers. Slate Education Assessnent Center, WashingIon, DC. 1993.

APPENDIX TABLE B-6
MATHEMATICS AND SCIENCE TEACHEFS IN GRADES 7-8, BY TIME ASSIGNED

	Mathematics			Science			Computer Science			General Assignment(includes Math/Sclence)		
State	Total	Maln Assignment	Other Assignment	Total	Main Assignment	Other Assignment	Total	Main Assignment	Other Assignmant	Total	Main Assignment	Other Assignment
Alabama	1,359	57\%	43\%	1,261	57\%	43\%	6	0\%	100\%	-	-\%	-\%
Alaska	-	-	-	-	-	-	-	-	-	-	-	-
Arizona	-	-	-	-	-	-	-	-	-	-	\sim	-
Arkansas	-	-	-	-	-	-	-	-	-	-	-	-
California	6,908	58	42	4,821	66	34	871	31	69	575	89	11
Colorado	1,032	76	24	974	76	24	-	-	-	973	92	8
Connecticut	937	71	29	782	83	17	32	50	50	-	-	-
Delaware	123	-	-	122	-	-	3	-	-	907	-	-
Dist. of Columbia	-	-	-	-	-	--	-	-	-	-	-	-
Florida	3,029	58	42	6,119	65	35	79	24	76	-	-	-
Georgia	-	-	-	-	-	-	-	-	-	--	-	-
Hawaii	360	56	44	221	52	48	23	13	87	-	-	-
Idaho	405	50	50	325	56	44	68	26	74	32	47	53
Illinois	1,166	98	2	1,072	98	2	62	95	5	3,331	97	3
Indiána	1,601	77	23	1,470	78	22	14	29	71	45	29	71
lowa	-	--	-	-	-	-	-	-	-	-	-	-
Kansas	628	-	--	652	-	-	101	-	-	1,031	-	\sim
Kentucky	1,189	69	31	980	75	25	1	0	100	-	-	-
Louisiana	-	-	-	-	-	-	-	-	-	-	-	-
Maine	425	-	-	368	-	-	39	-	-	211	-	-
Maryland	-	-	-	-	-	-	-	-	-	-	-	-
Massachusetts	-	-	-	-	-	-	-	-	-	-	-	-
Michigan	1,953	83	17	1,767	84	16	164	52	48	-	-_	-
Minnesota	963	60	40	843	64	36	-	-	-	-	-	-
Mississippi	1,038	68	32	832	68	32	34	44	56	-	-	-
Missouri	1,294	72	28	1,289	71	29	17	41	59	-	-	-
Montana	401	42	58	381	46	54	0	-	-	80	0	100
Nebraska	-	-	-	-	-	-	-	-	-	-	-	-
Nevada	300	84	16	198	75	25	9	22	78	--	-	-
New Hampshire	89	-	-	-	-	-	-	-	-	-	-	-
New Jersey	2,322	67	33	1,237	83	17	340	82	18	-	-	-
New Mexico	483	67	33	456	74	26	-	-	-	-	-	-
New York	6,092	54	46	5,382	68	32	1,026	41	59	-	-	-
North Carolina	2,774	49	51	2.173	57	43	63	51	49	-	-	-
North Dakota	459	27	73	392	28	72	-	-	-	-	-	-
Ohio	2,634	74	26	2,220	79	21	261	79	21	1,585	74	26
Oklahoma	922	70	30	850	69	31	\sim	-	-	303	14	86
Oregon	645	76	24	476	80	12	120	43	57	570	97	3
Pennsylvania	-	-	-	-	-	-	-	-	--	-	-	-
Puerto Rico	1.412	77	23	748	85	15	-	-	-	-	-	-
Rhode Island	232	98	2	217	98	2	11	91	9	1	0	100
South Carolina	1,637	54	46	1,168	55	45	-	-	-	-	-	-
South Dakota	319	46	54	298	47	53	-	-	-	25	80	20
Tennessee	-	-	-	-	-	-	\sim	-	-	-	-	-
Texas	6,421	61	39	5,742	67	33	-	-	-	-	-	-
Utah	272	75	25	217	67	33	36	64	36	11	91	9
Vermont	-	-	-	-	-	-	-	-	-	-	-	-
Virginia	-	-	-	-	-	-	-	-	-	-	-	-
Washington	-	-	-	-	-	-	-	-	-	-	-	-
West Virginia	461	99	1	276	98	2	-	--	-	-	-	-
Wisconsin	-	-	19	-	-	-	-		5	-	-	-
Wyoming	231	81	19	199	81	19	55	45	55	49	94	6
NATION	52,516	64\%	36\%	146,528	69\%	31\%	3,435	47\%	53\%	19,729	86\%	14\%

Note General Assignment includes middte school teachers teaching multiple subiects and sell-contained grade 7-8 teachers. - Data not avalable
Source. Slate Departments of Education. Dala on Public Schools. Fall 1991. California, Fall 1990
Councir of Chiet Slate School Olficers, State Educalion Assessment Center, Washinglon. DC, 1993

APPENDIX TABLE B-7
NEW MATH AND SCIENCE TEACHERS IN LARGE CITY DISTRICTS

STATE/City	$\begin{gathered} \text { \% } \\ \text { New } \\ \text { Math } \end{gathered}$	$\begin{gathered} \% \\ \begin{array}{c} \text { New } \\ \text { Science } \end{array} \end{gathered}$	$\begin{aligned} & \text { Math } \\ & \text { \% Newly } \\ & \text { Hirad } \end{aligned}$	Science $\%$ Newly
California	5\%	5%	10 \%	9%
11 Large City Districts	5.5	5	8	7
High	6	7	7	8
Low	1	0	7	0
New York	,	2	4	5
3 Large City Districts	2.1	2	6	6
High	2	2	6	6
Low	2	0	4	0
Ohio	3	3	6	5
5 Large City Districts	1	1	1	1
High	3	4	3	4
Low	0	0	0	0
Texas	6	6	14	14
9 Large City Districls	5.6	4	8.6	6
High	6	9	9	10
Low	1	0	5	1

Source State Departments of Eductation. Data on Public Schools. Fall 1991: California, Fall 1990 Council of Chief State School OHicers. State Education Assessment Center. Washington. DC. 1993

APPENDIX TABLE B-8
SECONDARY SCIENCE AND MATHEMATICS TEACHERS:
STATE CERTIFICATION REQUIREMENTS

	Course Cradits by Ceritication Field				
State	Math	BroadFleld Science	Btology, Chemistry, Physics	$\begin{aligned} & \text { Earth } \\ & \text { Science } \end{aligned}$	General Scianca
Alabama	36	60	27	27	60
Alaska	IHE	IHE	IHE	IHE	IHE
Arizona	30	30	30	30	30
Arkansas	21	-	24	24	24
California	IHE	-	IHE (Biological, Physical)	-	-
Colorado	IHE	IHE	IHE	IHE	IHE
Connecticut	18	-	18	18	21
Delaware	30	-	39-45	39	36
Dist. of Columbia	27	30	30	30	36
Florida.	30	-	21	21	20
Georgia	609 tr	70atr	409tr	409tr	-
Hawaii	IHE	IHE	IHE	IHE	IHE
Idaho	20	45	20	20	-
lilinois	25	32	24	24	24
Indiana	36	-	36	36	36
lowa	24	24	24	24	24
Kansas	IHE	IHE	IHE	IHE	IHE
Kentucky	30	30	30	30	-
Louisiana	20	-	20	20	32
Maine	36	-	36 (Life, Physical)	-	-
Maryland	30	-	46	46	-
Massachusetts	36	36	36	36	36
Michigan	Major(30) Minor(20)	30/20	30/20	30/20	30/20
Minnesota	IHE	-	IHE (Biology, Physical)	IHE	-
Mississippi	IHE	IHE	IHE	IHE	IHE
Missouri	30	30	20	20	20
Montana	30	60	30	30	-
Nebraska	30	56	24	24	-
Nevada	30	36	30	30	30
New Hampshire	IHE	IHE	IHE	IHE	IHE
New Jersey	30	-	30	30	-
New Mexico	24	24	-	-	-
New York	24	-	15	36	36
North Carolina	IHE	IHE	IHE	IHE	-
North Dakota	IHE	IHE	IHE	IHE	-
Onio	30	60	30	30	30
Oklahoma	40	-	40	40	40
Oregon	21/42	45	45	45	45
Pennsylvania	IHE	IHE	IHE	IHE	IHE
Rhode Island	30	30	30	-	30
South Carolina	IHE	IHE	IHE	IHE	IHE
South Dakola	18	21	12	12	18
Tennessee	36 qtr	489 tr	24 atr	24 qtr	24 gtr
Texas	24	48	24	24	-
Utah	459tr	-	69qtr(Bio) 45qutr(Chem, Phys)	69 atr	-
Vermont	IHE	IHE	IHE	IHE	IHE
Virginia	27	-	24	24	30
Washington	24	41	34	24	24
West Virginia	IHE	IHE	IHE	IHE	IHE
Wisconsin	34	54	34	34	34
Wyoming	24	30	12	12	12
TOTAL (states with req	$\begin{aligned} & 37 \text { states } \\ & \text { nents) } 14 \mathrm{IHE} \end{aligned}$	$\begin{gathered} 24 \text { states } \\ 12 \mathrm{IHE} \end{gathered}$	36 states 14 IHE	34 states 13 IHE	$\begin{aligned} & 26 \text { states } \\ & 10 \mathrm{IHE} \end{aligned}$

[^43]APPENDIX TABLE B-9
MIDDLE GRADES TEACHERS: STATE CERTIFICATION REQUIREMENTS IN SCIENCE AND MATHEMATICS

STATE	Separate Certification	Math	Course Credits	Science	Teaching Mathods in Sclance/Math	Supervised Teaching Exparience
Alabarna	Yes	27		36	Science \& Math	9 Sem. Cr.
Alaska	Yes		IHE		IHE	IHE
Arizona	No	-		-	-	-
Arkansas	Yes	18		18	-	12 Wks.
California	Yes		IHE		IHE	IHE
Colorado	Yes		IHE		Science \& Math	400 Hrs .
Connecticut	No	-		--	-	-
Delaware	Yes	15		-	Math Only	6 Sem. Cr.
Dist. of Columbia	Yes	24		30	Science \& Math	1 Full Sem.
Florida	Yes	21		18	Science \& Math	1 Full Sem.
Georgia	No	-		-	-	15 Otr. Cr.
Hawaii	No	-		-	-	-
Idaho	No	-		-	-	-
Illinois	No	--		-	-	-
Indiana	Yes	18		18	Science \& Math	9 Wks.
Iowa	No	-		-	-	-
Kansas	Yes		IHE		Science \& Math	10 Wks .
Kentucky	Yes	24		24	Science \& Math	12 Wks .
Louisiana	Yes	12		16	-	9 Sem. Cr.
Maine	Yes		2 Minors		Science \& Math	15 Wks .
Maryland	No	-		-	-	-
Massachusetis	Yes	36		36	Science \& Math	300 Hrs .
Michigan	Yes	30		-	-	6 Sem. Cr.
Minnesola	Yes		IHE		Science \& Math	1 Fuill Otr.
Mississippi	No	-		-	-	-
Missouri	Yes	21		21	-	1 Full Year
Montana	No	-		-	-	-
Nebraska	Yes	15		30	Science Only	400 Hrs .
Nevada	No	-		-	-	-
New Hampshire	Yes		IHE		IHE	IHE
New Jersey	No	-		-	-	-
New Mexico	No	-		-	-	-
New York	Yes	18		36	-	1 Full Year
North Caroina	Yes		IHE		Science \& Math	6 Sem. Cr.
North Dakota	Yes		IHE		Science \& Math	10 Wks.
Ohio	Yes	20		20	Science \& Math	IHE
Oklahoma	Yes	18		18	Science \& Math	-
Oregon	No	-		-	-	-
Pennsyivania	No	-		-	-	-
Rhode Island	Yes	18		18	Science \& Math	6 Sem. Cr.
South Carolina	Yes		IHE		IHE	60 Days
South Dakota	Yes	12		12	Science \& Math	10 Wks.
Tennessee	No	-		-	-	-
Texas	No	-		-	-	-
Utah	No	-		-	-	-
Vermont	Yes		2 Minors		Science \& Math	IHE
Virginia	Yes	15		15	-	6 Sem. Cr.
Washington	No	-		-	-	-
West Virginia	No	-		-	-	-
Wisconsin	Yes	22		22	Science \& Maih	1 Full Sem.
Wyoming	Yes	24		30	Science \& Math	6 Sem. Cr.
TOTAL (states with requ	s) Yes = 31	22 sta	9 HE	20 states	20 Science 20 Math 4 IHE	$\begin{gathered} 26 \text { states } \\ 5 \mathrm{IHE} \end{gathered}$

[^44]Source Stale Qepartmenis of Education. Mathemalics and Science Supervisors. Whater 1992
Council ol Chutl State School Ollicers. Stale Education Assessmenl Center. Washinglon, DC. 1993

APPENDIX TABLE B-10
CERTIFICATION STATUS OF MATH TEACHERS IN GRADES 7-8, BY TIME ASSIGNED

		Mathematics Main Assiynment			Mathematics Other nssiynment		
State	$\begin{gathered} \text { Math } \\ \text { Teachers } \\ \text { (Grades } 7-8) \end{gathered}$	$\stackrel{\%}{\text { Certifled }}$ Math	Certifiled Other	$\begin{gathered} \% \\ \text { Hot } \\ \text { Hertified } \end{gathered}$	\% Certified Math	$\stackrel{\%}{\text { Certlied }}$ Other	$\begin{gathered} \% \\ \text { Hot } \\ \text { Hertilied } \end{gathered}$
Alabama	1,359	56\%	0\%	1\%	39\%	0\%	4\%
Alaska	-	-	-	-	-	--	-
Arizona	-	-	-	-	-	-	-
Arkansas	-	-	-	-	-	-	-
Calitornia	6,908	29	21	7	11	22	9
Colorado	1.032	43	17	16	4	7	13
Connecticut	937	41	30	0.1	8	16	5
Delaware	123	75	25	0	0	0	0
Dist. of Columbia	-	-	-	-	-	-	-
Florida	3,029	55	1	2	19	8	15
Georgia	-	-	-	-	-	-	-
Hawaii	360	-	-	-	-	-	-
!daho	405	29	20	1	24	24	2
illinois	1.166	-	95	3	-	2	0.3
Indiana	1.601	67	8	2	14	7	3
lowa	-	-	-	-	-	-	-
Kansas	628	-	-	-	-	-	-
Kentucky	1,189	24	40	5	8	21	3
Louisiana	-	-	-	-	-	-	--
Maine	-	--	-	-	-	-	-
Maryland	-	-	-	-	-	-	-
Massachusetts	-	-	-	-	-	-	-
Michigan	1,953	-	-	-	-	-	-
Minnesola	963	59	0	1	37	0	3
Mississippi	1.038	25	43	0.3	11	20	0.3
Missouri	1,294	67	0	5	24	0	4
Montana	401	23	18	0.5	23	34	2
Nebraska	-	-	-	-	-	-	-
Nevada	300	56	0	28	10	0	5
New Hampshire	89	-	-	-	-	-	-
New Jersey	-	-	-	-	-	-	-
New Mexico	483	54	0	13	27	0	7
New York	6,092	51	0	3	41	0	5
North Carolina	2.774	45	3	1	24	23	4
North Dakota	459	19	7	0	39	34	0
Ohio	2,634	44	27	2	6	14	6
Oklahoma	922	36	33	1	20	9	1
Oregon	645	-	-	-	-	-	-
Pennsylvania	-	-	--	-	-	-	-
Puerto Rico	1,412	64	0	13	20	0	3
Rhode Island	232	98	0	0	2	0	0
South Carolina	1,637	34	19	1	9	23	14
South Dakota	319	46	0	0.3	52	0	2
Tennessee	-	-	-	-	-	-	-
Texas	6.421	-	-	-	-	-	-
Utah	272	63	0	12	13	0	12
Vermont	81	74	36	0	21	17	0
Virginia	-	-	-	-	-	-	-
Washington	-	-	-	-	-	-	-
West Virginia	461	97	0	2	1	0	0
Wisconsin	-	-	-	-	-	-	-
Wyoming	231	65	16	0	9	11	0
SUM (29 states)		45\%	15\%	4\%	20\%	11\%	6\%

Nole. Certified Other = Certified in Science. Middle/Junior High. General Elementay, andor General Secondary - Dala nol available
Source State Departments ol Education. Data on Pubic Schools. Fall 1991, Caltiorna. Fall 1990.
Council ol Chief Slate School Officers. Stale Education Assessment Cenler. Washinglon. DC, 199.

90

CERTIFICATION STATUS OF SCIENCE TEACHERS IN GRADES 7-8, BY TIME ASSIGNED

		Science Main Assionment			Science Other Assignment		
State	$\begin{gathered} \text { Sclence } \\ \text { Teachers } \\ \text { (Grades } 7-8 \text {) } \end{gathered}$	$\begin{gathered} \% \\ \begin{array}{c} \% \\ \text { Certified } \\ \text { Sclence } \end{array} \end{gathered}$	$\begin{gathered} \% \\ \text { Certified } \end{gathered}$ Other	$\begin{gathered} \% \\ \text { Not } \\ \text { Certifled } \end{gathered}$	\% Centified Sclence	$\begin{gathered} \% \\ \text { Certified } \\ \text { Other } \end{gathered}$	$\begin{gathered} \% \\ \text { Not } \\ \text { Corified } \end{gathered}$
Alabama	1,261	48\%	7\%	2\%	30\%	7\%	6\%
Alaska	-	-	-	-	-	-	-
Arizona	-	-	-	-	-	-	-
Arkansas	-	-	-	-	-	-	-
Celifornia	4,821	46	13	8	15	12	7
Colorado	974	61	8	7	8	6	10
Connecticut	782	57	26	0.3	5	9	3
Delaware	122	84	16	0	0	0	0
Dist. of Columbia	-	-	-	-	-	-	-
Florida	6,119	59	4	2	13	9	13
Georgia	-	-	-	-	-	-	-
Hawaii	221	-	-	-	-	-	-
Idaho	325	47	7	1	30	12	3
illinois	1,072	-	95	4	-	1	1
Indiana	1,470	73	4	1	16	3	3
lowa	-	-	-	-	-	-	-
Kansas	652	-	-	-	-	-	-
Kentucky	980	21	43	11	5	17	4
Lovisianâ	-	-	-	-	-	-	-
Maine	-	-	-	-	-	-	--
Marylz	-	-	-	-	-	-	--
Massaciusetts	-	-	-	-	--	-	-
Miccinigan	1767	-	-	-	-	-	-
Minnesola	843	56	0	8	28	0	8
Mississippi	832	43	25	0.1	11	21	0.4
Missouri	1,289	61	0	11	23	0	5
Miontana	381	17	29	0	18	35	1
Nebraska	-	-	-	-	-	-	-
Nevada	198	49	0	26	12	0	13
New Hampshire	-	-	-	-	-	-	-
New Jersey	-	-	-	-	-	-	-
New Mexico	456	68	0	6	22	0	4
New York	5,382	62	0	6	25	0	7
North Carolina	2,173	54	1	2	27	12	4
North Dakota	392	22	6	0	49	23	0
Ohio	2,220	52	26	2	4	13	4
Oklahoma	850	52	16	1	23	7	1
Oregon	476	-	-	-	-	-	-
Pennosylvania	-	-	-	-	$\overline{1}$	-	-
Puerto Rico	748	84	0	1	14	0	0.4
Rhode Island	217	98	0	0	2	0	0
South Carolina	1.168	45	9	1	17	16	12
South Dakota	298	47	0	1	49	0	3
Tennessee	-	-	-	-	-	-	-
Texas	5,742	-	-	-	$\overline{17}$	-	-
Utah	217	52	0	15	17	0	16
Vermont	70	64	34	1	23	10	1
Virjinia	-	-	-	-	-	-	-
Washington	-	-	-	-	-	-	-
West Virginia	276	95	0	3	2	0	0
Wisconsin	-	-	-	-	-	-	-
Wyoming	199	64	17	0	11	8	0
SUM (29 states)		53\%	- 11\%	4\%	17\%	8\%	7\%

Note Centimed Other $=$ Certilted in Madh. Middle/Junor High General Elententary andor General Secondary - Data nol avatable
Source State Departments ol Education. Data on Public Schools. Fall 1991. Callornia Fall 1990
Council ol Chiel Slate School Oflicers. Siale Educalion AssessmenI Center. Washinglon. DC. 1993

APPENDIX TABLE B-12
CERTIFICATION STATUS OF MATHEMATICS TEACHERS IN GRADES 9-12, BY TIME ASSIGNED

		Main Assignment		Other Assignment	
State	$\begin{gathered} \text { Math } \\ \text { Teachers } \\ \text { Total } \end{gathered}$	$\begin{gathered} \% \\ \text { Certifled } \\ \text { Math } \end{gathered}$	$\begin{gathered} \% \\ \text { Not } \\ \text { Cerrified } \end{gathered}$	$\begin{gathered} \% \\ \text { Certifled } \\ \text { Math } \end{gathered}$	$\begin{gathered} \% \\ \text { Not } \\ \text { Nerifliad } \end{gathered}$
Alabanna	1,608	51\%	1\%	46\%	3\%
Arkansas	709	98	2	-	-
California	9.837	61	8	18	13
Colorado	1,275	73	18	2	8
Connecticut	1,545	81	0.3	17	1
Delaware	192	94	6	-	-
Florida	8,880	64	7	7	22
Idaho	747	38	1	58	3
Ilinois	3.799	76	20	3	1
Indiana	2,270	82	2	14	3
Kentucky	1,568	86	1	13	1
Minnesota	1.787	76	0.3	22	2
Mississippi	1,142	77	6	13	4
Missouri	2,029	84	0.2	15	0.5
Montana	506	79	0	20	1
Nevada	474	69	0.4	27	4
New Mexico	716	82	0.1	18	0.3
New York	7,555	70	3	23	5
North Carolina	3,318	73	3	20	4
North Dakota	468	65	0	35	0
Ohio	4.210	79	2	11	8
Oklahoma	1.701	88	3	7	2
Oregon	1,207	86	1	0	13
Pennsylvania	6,443	84	12	3	
Puerto Rico	1,582	56	10	34	0.3
Rhode Island	413	97	0	3	0
South Carolina	1.845	84	3	8	5
South Dakota	467	68	0	30	1
Utah	1,243	60	5	28	6
Vermont	278	78	0	19	3
West Virginia	1,019	94	5	2	0.3
Wyoming	275	80	5	12	2
SUM (32 states)		73\%	6\%	14\%	7\%

[^45]Source State Departments of Education. Data on Public Schools, Fall 1991. Calitorma. Fall 1990
Council of Chel State Schoot Officers. State Education Assessment Center. Washuglon. DC. 1993

APPENDIX TABLE B-13
CERTIFICATION STATUS OF BIOLOGY TEACHERS IN GRADES 9-12, BY TIME ASSIGNED

	Main Assignment				Other Assignment		
STATE	Biology Teachers Total	\% Certifiad Bialogy	$\stackrel{\%}{\text { Certifleá }}$ Broad Field	$\begin{gathered} \% \\ \begin{array}{c} \% \\ \text { Not } \\ \text { Certified } \end{array} \end{gathered}$	$\begin{gathered} \% \\ \text { Cerrifiad } \\ \text { Biology } \end{gathered}$	$\%$ Certifled Broad Field	$\begin{gathered} \% \\ \text { Not } \\ \text { Certilied } \end{gathered}$
Alabama	826	23\%	4\%	0\%	52\%	20\%	2\%
Arkansas	629	40	3	0.5	48	7	2
California	3,887	43	8	7	25	6	10
Colorado	1,131 *	0	89	2	0	4	5
Connecticut	679	62	0.1	0.4	33	2	3
Delaware	51	75	20	6	-	-	-
Florida	2.427	54	2	2	20	4	18
Idaho	253	30	15	1	30	21	3
Illinois	1.369	-	74	22	-	3	0.4
Indiana	1.015	73	0	2	23	0	2
Kentucky	716	69	0	1	29	0	2
Minnesota	741	52	15	1	27	5	1
Mississippi	792	58	0	10	22	0	10
Missouri	824	81	0	1	41	0	3
Montana	251	37	7	0.4	32	24	0
Nevada	211	12	47	0.5	7	33	1
New Mexico	313	0	62	0.3	0	38	0
New York	5.047	63	0	3	29	0	5
North Carolina	1.368	35	26	1	12	24	2
North Dakota	261	26	3	0	50	20	0
Ohio	1.797	56	12	1	20	8	3
Oklahoma	914	64	0	1	33	0	2
Oregon	362	80	0	1	16	0	4
Pennsylvania	1.939	62	17	8	8	3	
Puerto Rico	414	92	0	1	7	0	0
Rhode Island	153	88	1	0	11	1	0
South Carolina	664	41	28	1	10	13	7
South Dakota	229	29	14	0	31	25	1
Utah	456	61	0	7	27	0	6
West Virginia	381	80	0	4	14	0	2
Wyoming	147	53	19	4	22	1	0
SUM (31 states)		50\%	13\%	4\%	22\%	6\%	5\%

[^46]$$
11,4
$$

APPENDIX TABLE B-14

CERTIFICATION STATUS OF CHEMISTRY TEACHERS IN GRADES 9-12, BY TIME ASSIGNED

		Main Assignment			Other Assignment		
STATE	Chemistry Teachers Total	$\%$ $\begin{array}{c}\text { Certified } \\ \text { Chemistry }\end{array}$	$\%$ Corifilied Braad Field	$\begin{gathered} \% \\ \text { Not } \\ \text { Cortilied } \end{gathered}$	$\underset{\substack{\text { Cortifled } \\ \text { Chemistry }}}{\%}$	$\%$ Certified Broad Fleid	$\begin{gathered} \% \\ \text { Not } \\ \text { Nertifle } \end{gathered}$
Alabama	378	4\%	4\%	0.3\%	41\%	44\%	6\%
Arkansas	305	25	6	1	31	31	6
Calitornia	1,365	38	8	7	32	5	9
Connecticut	375	58	0.3	0	35	4	2
Deiaware	16	75	25	0	-	--	-
Florida	691	58	2	1	31	6	2
Idaho	131	15	15	4	18	34	15
llinois	687	-	83	16	-	i	0.1
indiana	507	69	0	3	25	0	3
Kentucky	344	58	0	1	40	0	,
Minnesola	501	26	14	2	33	15	11
Mississippi	548	34	0	6	41	0	20
Missouri	444	56	0	1	69	0	7
Montana	167	23	10	0	20	47	1
Nevada	77	18	39	0	8	35	0
New Mexico	143	0	38	0	0	62	0
New York	1,835	64	0	2	30	0	5
North Carolina	571	18	44	0	7	30	0.2
Norih Dakota	176	10	7	0	24	59	0
Ohio	1,014	34	26	0	16	23	2
Oklahoma	463	31	0	0.2	65	0	3
Pennsylvania	1,065	54	23	8	5	9	1
Puerto Rico	231	84	0		15	0	0
Rhode Island	88	73	8	0	18	1	0
South Carolina	346	14	45	2	5	29	4
South Dakola	155	7	14	0	13	65	2
Utah	124	59	0	3	28	0	10
West Virginia	162	65	0	6	25	0	4
Wyoming	88	48	15	5	26	6	1
SUM (29 states)		41\%	15\%	3\%	25\%	11\%	5\%

Note: General secondary certilicalion inctuded in broad field category Calitornia-Mann, 114 teachers. Other. 73 teachers. ConnecticulMain, I leacher. Other. 15 teachers: Illmois-Main, 567 leachers, Other, 7 teachers. North Carolina-Other. 1 leacher - Data nol avaliabie

Source State Depariments of Education. Data on Public Schools. Fall 1991: California. Fall 1990
Council ol Chiel State School Officers, State Education Assessment Center. Washinglon, OC. 1993

APPENDIX TABLE B-15
CERTIFICATION OF PHYSICS TEACHERS IN GRADES 9-12, BY TIME ASSIGNED

	Main Asslgnment				Other Assignment		
STATE	Physics Teachers Total	$\begin{gathered} \% \\ \text { Certifled } \\ \text { Physics } \end{gathered}$	$\stackrel{\%}{\%}$ Broad Fleld	$\begin{gathered} \% \\ \text { Mot } \\ \text { Mortilied } \end{gathered}$	$\stackrel{\%}{\text { Certified }}$ Physir.s	Cartilled Broad Fleld	$\begin{gathered} \% \\ \text { Not } \\ \text { Nertifled } \end{gathered}$
Alabama	286	1\%	1\%	0%	14\%	65\%	19\%
Arkansas	238	5	1	0	29	54	11
California	922	19	4	3	49	10	14
Conneclicut	263	35	-	1	41	12	11
Delaware	30	47	47	7	-	-	-
Florida	401	45	4	0.5	30	18	2
Idaho	91	5	2	3	10	43	36
lilinois	321	-	81	17	-	2	0.3
Indiana	366	28	-	4	58	-	11
Kentucky	219	12	0	0	72	0	16
Minnesola	375	18	7		41	24	9
Mississippi	197	8	0	2	43	0	48
Missouri	241	24	0	3	107	0	26
Montana	134	6	6	0	15	69	4
Nevada	50	10	18	0	14	54	4
New Mexico	98	0	14	0	0	85	1
New York	1.089	50	$\hat{0}$	2	34	0	14
North Carolina	351	5	11	1	15	61	7
North Dakota	124	1	4	0	15	81	
Onio	748	14	12	0.4	26	45	3
Oklahoma	243	12	0	0.4	79	0	9
Pennsylvanıa	693	29	34	7	8	18	4
Puerto Rico	119	69	0	6	25	0	0
Rhode Island	52	77	6	0	13	4	7
South Carolina	232	3	14	1	9	66	7
Sounh Dakota	123	3	5	0	7	78	7
Ulah	80	30	0	4	53	0	14
Mesi Virgiria	108	18	0	3	70	0	9
Wyoming	71	42	13	6	37	1	1
SUM (29 states)		23\%	10\%	3\%	33\%	21\%	10\%

[^47]Source Stato Departments ol Educalion Data on Puble Schoois. Fall 1991 Cahlormal Fall 1990
Council of Chrel Siate Sction Officers. Sita Éducation Assessmen' Center. Washmglon. OC. 1993

APPENDIX TABLE B-16

CERTIFICATION STATUS OF EARTH SCIENCE TEACHERS IN GRADES 9-12, BY TIME ASSIGNED

	Main Assignment				Other Assignment		
STATE		$\stackrel{\%}{\%}$ Earth Sclence	$\%$ Certilited Braad Fleld	$\begin{gathered} \% \\ \text { Not } \\ \text { Certliled } \end{gathered}$	Cerlifled Earth Sclence	Ceritifed Broad Field	$\begin{aligned} & \% \\ & \text { Not } \end{aligned}$ Cortilied
Alabama	21	0\%	0\%	5\%	0\%	90\%	5\%
Arkansas	64	48	2	5	38	3	5
Calitornia	550	25	4	3	49	10	9
Connecticut	257	44	0.4	5	29	3	18
Delaware	8	88	13	0	-	-	-
Florida	1,323	5	33	2	2	32	26
Idaho	148	7	31	1	8	43	10
Ilinois	204	-	84	6	-	8	1
Indiana	287	48	-	14	17	-	21
Kenlucky	51	14	0	8	31	0	47
Minnesola	111	15	6	7	36	19	16
Mississippi	7	0	0	0	86	0	14
Missouri	141	39	0	10	40	0	26
Montana	175	13	22	1	11	49	5
Nevada	91	10	41	4	3	38	3
New Mexico	41	0	24	0	0	73	2
New York	2.831	53	0	7	25	0	15
North Carolina	328	2	17	2	2	72	
North Dakola	8	13	0	0	13	75	0
Ohio	410	28	25	0.5	10	32	5
Oklahomá	65	17	0	3	54	0	26
Pennsylvania	778	45	29	6	5	13	2
Puerto Rico	94	79	0	5	16	0	0
Rhode island	10	0	70	0	0	30	0
South Carolina	2	0	0	50	0	50	0
South Dakota	28	7	32	0	,	57	0
Utah	344	31	0	17	33	0	19
West Virginia	283	71	0	3	26	0	0.4
Wyoming	63	46	14	3	27	10	0
SUM (29 states)		34\%	14\%	6\%	19\%	13\%	14\%

Note General secondary ceritication inciuded in broad hetd category Camornia--Marn 20 leachers. Other 57 teachers Connectrcut--.
Man 1 leacher Other 8 leachers. Illinors-Mam. 171 feachers. Other 17 leachers. North Carolina-Mam. 1 leacher Other 36 leachers --- Data nol avallable
Source State Departments ol Education. Data on Pubirc Šchools. Fall 1991. Callowa. Fall 1990
Council ol Chel State School Olticers. State Educaton Assessment Center Washington. OC. 1993

APPENDIX TABLE B-17

NEW MINDRITY and Famale teachers in math and science (GRADES 9-12, OCTOBER 1991)

State	No. of New 1st Yr. Math	\% Minority of Now Math	\% Fomala of New Math	\% Over Age 30 ot New Math	No. of Now ist Yr . Scionce	\% Minarity of New Sclance	\% Femala of New Sclence	\% Over Age 30 of New Sclence
Alabama	62	6\%	61\%	31\%	44	4\%	65\%	37\%
Alaska	-	--.	-	-	--	-	-	-
Arzona	-	-	-	-	--	-	$\bar{\square}$	-
Arkansas	119	5	50	32	39	0	35	49
California	537	19	45	45	258	18	48	49
Colorado	55	5	47	38	54	2	67	36
Comecticut	12	8	67	67	17	9	73	32
Delaware	15	7	60	20	12	20	33	40
Dist of Columbia	---	--	-	-	-	-	-	-
Florida	484	21	63	59	159	20	56	58
Georgia	-	--	-	--	-	-	$\bar{\square}$	$\overline{58}$
Hawaii	34	47	56	44	9	50	33	58
Idaho	76	0	41	33	28	0	50	42
Illinois	111	6	57	23	89	4	55	31
Indiana	42	0	50	14	45	2	64	25
Jowa	43	0	47	93	28	3	43	81
Kansas	45	0	44	16	47	2	43	25
Kentucky	87	1	66	23	38	6	61	49
Louisiana	-	--	-	-	-	--	57	-
Maine	19	-	42	-	5	-	57	-
Maryland	-	-	-	-	-	-	-	-
Massachuselts	---	-	-	-	-	-	$\bar{\square}$	--
Michıgan	192	8	55	37	49	2	42	42
Minnesota	49	-	59	29	45	-	47	36
ivisssissippi	419	15	69	58	469	16	56	69
Missouri	102	1	62	21	82	4	52	45
iviontana	45	0	36	24	26	0	15	47
Nebraska	-	--	-	-	-	-	$\overline{7}$	$\overline{3}$
Nevada	26	0	42	31	17	9	41	32
New Hampshire	\cdots	-	\cdots	$\overline{1}$	$\bar{\square}$	\cdots	-	$\overline{7}$
New Jersey	66	12	70	18	36	11	47	34
New Mexiso	53	13	47	51	25	28	31	53
New York	98	--	46	33	118	-	61	33
North Carolina	171	10	72	20	105	12	67	30
North Dakota	24	4	38	8	19	0	40	52
Ohio	125	2	60	22	82		50	35
Oklahoma	88	2	57	31	69	2	58	27
Oregon	46	-	-	43	9	-	$-$	25
Pennsylvania	101	10	51	36	55	11	40	53
Puerto Rico	70	100	56	41	27	100	77	57
Rhode Island	13	8	38	77	4	20	80	60
South Carolina	76	16	64	22	39	2	63	22
South Dakota	21	0	33	14	20	0	23	12
Tennessee	-	-	-	-	-	-	$\overline{51}$	-
Texas	664	24	55	-	329	21	51	50
Utah	14	7	50	36	6	13	13	50
Vermont	3	0	33	67	5	0	67	33
Virginia	-	--	-	-	-	-	-	-
Washingion	-	-	-	-	-	-	-	-
West Virginia	--	-	-	-	-	-	-	-
Wisconsin	22	\bigcirc	$\overline{-}$	$\overline{23}$	8		45	0
Wyoming	22	0	27	23	8	0	4	0
SUM (38 slates)	4,229	14\%	55\%	33\%	2,519	12\%	52\%	41\%

[^48]
11

APPENDIX TABLE B-18
CERTIFICATION OF HIGH SCHOOL MATH AND SCIENCE TEACHERS IN LARGE CITY OISTRICTS

STATE/City	\% Math Not Centilied	\% Bloiogy Not Cortillad	\% Chemistry Not Cortilled	\% Physics Not Certifiad	\% Earth Science Not Certified
California	20	18	17	17	12
10 Large City Districts	29	27	26	27	11
High	34	32	28	28	33
Low	8	0	7	0	0
New York	8	8	7	16	23
3 Large City Districts	11	15	9	12	17
High	11	16	8	13	17
Low	3	1	4	0	3
Ohio	10	4	2	3	5
5 Large City Districts	9	4	3	5	5
High	16	7	9	13	8
Low	5	0	0	0	0

Source. Slate Depantments ol Education. Data on Public Schools, Fall 1991. Callointa Fall 1990
Ccuncil ol Chel State School Ollicers. Slaie Education Assessment Center. Washington. DC. 1993

APPENDIX TABLE E-19
PERCENTAGE OF GRADE 8 STUDENTS WITH TEACHERS WHO HAVE MATHEMATICS COURSEWORK IN SEVEN RECOMMENDED AREAS OF MATHEMATICS

STATE	$\begin{aligned} & 6 \text { or } 7 \\ & \text { Arases } \end{aligned}$	Mathematics Coursework 4 or 5 Areas	$\begin{aligned} & 0103 \\ & \text { Areas } \end{aligned}$	Math Proficiency Score of Students
Alabama	46\%	40\%	14\%	252
Arizona	30	27	43	259
Arkansas	41	41	18	256
California	41	29	30	256
Colorado	66	22	12	267
Connecticut	35	38	28	270
Delaware	52	35	14	261
District of Columbia	79	13	8	231
Florida	40	31	29	255
Georģia	38	29	33	258
Guam	26	42	32	231
Hawaii	52	31	17	251
Idaho	51	27	21	272
Ilinois	36	33	31	260
Indiana	71	23	7	267
lowa	54	28	18	278
Kentucky	25	30	45	256
Louisiana	36	28	36	246
Maryland	56	30	14	260
Michigan	39	34	26	264
Minnesola	85	13	2	276
Montana	59	24	17	280
Nebraska	69	19	12	276
Nevs Hampshire	55	24	21	273
New Jersey	42	26	33	269
New Mexico	44	35	21	256
New York	57	28	14	261
North Carolina	43	28	29	250
North Cakola	74	15	12	281
Ohio	46	26	29	264
Oklahoma	30	41	29	263
Oregon	51	29	20	271
Pennsylvania	60	27	13	266
Rhode Island	63	29	8	260
Texas	39	42	19	258
Virgin Isiands	52	29	19	218
Virginia	56	31	13	264
West Virginia	45	36	19	256
Wisconsin	50	24	26	274
Wyoming	65	24	11	272
Nation	52\%	29\%	19\%	261

Source National Center for Education Statistics. The State of Mathematirs. Achievenient NAEP's 1990 Assessment of the Nation and the Tial Assessment of the Siales. US Department of Education. 1991
Councit of Chuel State School Officers. State Education Assessment Center. Washington DC 1993

APPENDIX TABLE B-20

STANDARD ERRORS FOR TARLE 24

PERCENTAGE DF MATHEMATICS AND SCIENCE TEACHERS WITH MANOR IN FIELD

	Mathematics		Sclence	
State	Main Assignment: \% with Major In Math	All Teachers \% with Major in Math	Main Assignment: $\%$ with Major In Sclence	All Teachers \% with Major in Sclence
Alabama	4.9	5.1	6.2	6.4
Alaska	9.8	6.5	4.8	6.2
Arizona	6.0	6.1	5.9	6.5
Arkansas	8.9	6.1	6.9	6.6
California	6.1	6.4	7.2	6.8
Colorado	5.7	5.5	3.3	3.9
Connecticut	8.3	77	3.9	4.4
Delaware	-	-	-	-
Dist. of Columbia	--	-	-	-
Florida	7.6	7.4	9.5	8.9
Georgia	4.8	5.4	5.2	5.7
Hawaii	-	-	-	-
Idaho	8.2	6.9	6.8	6.8
Illinois	72	8.0	59	5.3
Indiana	6.2	7.5	5.7	5.5
lowa	7.2	8.3	6.9	8.5
Kansas	7.7	6.8	7.1	7.4
Kentucky	5.3	5.5	6.3	9.2
Louisiana	6.4	6.4	6.6	6.2
Maine	7.2	6.7	4.2	64
Maryland	6.7	7.6	5.4	8.8
Massachusetts	6.5	7.4	5.3	5.4
Michigan	6.9	7.5	6.4	7.0
Minnesota	3.3	39	4.4	5.4
Mississippi	4.2	4.4	62	5.6
Missouri	6.1	5.6	5.0	6.8
Montana	55	5.1	6.8	6.3
Nebraska	4.8	4.6	5.4	4.2
Nevada	-	10.0	-	-
New Hampshire	-	-	-	-
New Jersey	5.5	71	7.3	7.5
New Mexico	8.7	9.1	9.5	7.4
New York	6.4	7.2	4.4	5.3
North Carolina	6.6	6.8	4.7	5.1
North Dakota	4.2	4.3	5.6	5.0
Ohio	5.2	5.0	7.2	6.6
Oklahoma	5.5	5.8	6.5	6.6
Oregon	6.9	6.4	4.1	5.7
Pennsylvania	5.8	6.0	4.6	5.2
Rhode Island	-	-	-	-
South Carolina	7.7	8.4	7.3	6.6
South Dakota	3.3	3.8	6.0	51
「ennessee	5.6	5.1	6.4	6.3
Texas	5.8	5.4	6.1	5.8
Utah	7.4	5.3	7.4	7.9
Vermont	-	-	-	-
Virginia	6.9	6.8	5.7	63
Washington	7.7	7.8	5.8	5.2
West Virginia	6.6	6.4	8.1	77
Wisconsin	4.4	6.1	6.7	6.1
Wyoming	5.3	6.9	6.6	6.5
NATION	1.5	1.6	1.3	1.4

Source NCES. Schools and Stalling Survey Public School Teachers. Spring 1991
Council or Cheel State School Ollicers Slate Educalion Assessment Center Washnolor DC 1993

APPENDIX TABLE B-21
STANDARD ERRORS FOR TABLE 25
AVERAGE CLASS SIZE IN MATHEMATICS AND SCIENCE AND PERCENT CLASSES OVER 30 STUDENTS (GRADES 9-12)

State	All math Average Class	Advanced Math Average Class	Percent Advancead Over 30	All Science Average Class	Blology Average Class	Percent Blology Over 30
Alabama	0.8	1.3	1.3	0.8	1.0	2.7
Alaska	1.2	-	-	1.5	2.3	7.9
Arizona	1.0	1.1	5.6	1.1	1.0	4.9
Arkansas	0.8	-	--	0.7	0.9	<1
California	0.8	0.7	7.7	0.8	0.9	3.9
Colorado	0.9	1.1	6.4	0.6	0.6	1.9
Connecticut	0.9	0.9	0.0	2.0	-	-
Delaware	-	-	-	-	-	-
Dist. of Columbia	--	-	-	-	-	-
Fiorida	1.2	1.9	9.9	1.4	1.3	5.3
Georgia	1.2	1.5	4.7	0.9	1.3	<1
Hawaii	1.2	-	-	-	-	-
Idaho	0.8	1.4	5.4	0.7	0.8	1.2
Illinois	0.7	1.2	3.2	0.8	1.1	<1
Indiana	0.9	0.9	2.1	1.5	1.8	<1
lowa	1.2	1.2	<1	1.0	0.9	<1
Kansas	1.2	1.1	<1	0.7	1.3	<1
Kentucky	1.3	1.2	7.6	0.9	2.0	3.7
Louisiana	1.1	1.3	2.6	1.2	1.5	5.8
Maine	0.7	0.8	0.0	1.6	-	-
Maryland	11	1.0	5.1	1.5	2.2	9.6
Massachusetts	0.5	1.0	<1	0.7	1.3	1.3
Michigan	1.2	1.2	3.1	0.9	14	6.2
Minnesota	0.7	1.5	5.8	0.8	0.7	3.0
Mississippi	0.7	0.8	<1	1.5	1.8	3.6
Missouri	0.6	1.4	2.2	0.8	1.2	<1
Montana	1.0	1.9	<1	0.8	1.3	<1
Nebraska	0.8	1.1	<1	1.3	1.0	<1
Nevada	0.9	-	-	1.6	-	-
New Hampshire	0.9	-	-	0.8	-	-
New Jersey	0.6	1.1	0.0	0.5	1.1	<1
New Mexico	1.4	3.7	7.8	0.8	1.2	2.8
New York	0.6	1.3	7.9	1.5	5.1	8.9
North Carolina	0.7	0.9	3.1	0.8	-	-
Norih Dakota	0.7	1.0	<1	1.0	1.0	<1
Ohio	0.7	1.1	<1	0.6	2.1	3.5
Oklahoma	0.7	1.0	<1	0.7	0.9	1.4
Oregon	0.6	0.7	3.2	0.7	0.7	3.3
Pennsylvania	0.7	1.3	<1	0.9	-	-
Rhode Island	-	-	-	-	-	-
South Carolina	0.9	0.9	<1	0.8	1.3	2.8
South Dakota	1.3	1.1	1.7	0.8	0.9	1.8
Tennessee	0.9	1.3	5.5	0.7	1.0	5.6
Texas	0.5	0.7	1.0	0.6	1.3	2.6
Utah	0.9	1.4	6.7	0.9	0.7	5.1
Vermont	0.9	-	-	1.0	-	-
Virginia	0.9	0.7	3.4	0.6	-	-
Washington	0.7	1.3	4.4	1.0	0.9	6.1
West Virginia	0.1	0.8	1.7	0.8	0.8	0.6
Wisconsin	0.7	1.0	3.3	0.5	0.6	<1
Wyoming	1.2	-	-	0.5	1.0	<1
NATION	0.2	0.3	1.3	0.2	0.5	0.9

Notes $<=1$ Less than 1 percent of classes. - Respondents too lew tor a reliable state esimate
Source NCES. Schools and Stalling Survey. Public School Teachers. Sonng 1991
Council of Chiet State School Ollicers. State Education Assessment Center. Washington. DC. 1993.

APPENDIX C

TECHNICAL APPENDIX

Computation of estimated proportion of high school students taking selected mathematics and science courses by graduation (Tables 5 and 8).

The percentages shown in Tables 5 and 8 for each course are statistical estimates of course taking of high school students by the time they graduate, based on the total course enrollment in grades $9-12$ as of fall 1991 divided by the estimated number of students in a grade cohort during 4 years of high school.

Synthetic cohort statistics have been used previously in education. For example, a synthetic high school dropout statistic has been estimated, based on the sum of the percentages of students who drop out at each grade, for grades 9-12 (Kominski, 1987). Cross-sectional data on dropouts by grade are used to estimate a true dropout rate over a 4 -year period of high school. A true dropout rate requires tracking the status of the same group of students (cohort) through 4 years of high school. If only cross-sectional data are available, the synthetic cohort statistic provides an estimate of the high school dropout rate.

The Science and Mathematics Indicators Project desired a synthetic cohort statistic of the proportion of graduates in a state that take a given course, e.g., algebra 1 . Since most states do not collect data by grade, the approach used in computing a synthetic dropout statistic for dropouts had to be revised. First, the numerator is the total number of students in grades $9-12$ that took a given course, e.g., algebra 1, in Fall 1991. The denominator is an estimate of the number of students in a cohort of students summed over a 4 -year period of high school. For each state, the size of the cohort of students that have some probability of taking a given course, e.g., algebra 1, during 4 years of high schoc' is estimated by: the state student membership in each grade (for grades 9-12) weighted by the regional percentage of students that took the course at each grade level, and summing the weighted memberships for each grade for grades 9-12 The state student memberships by grade are from the 1991-92 Common Core of Data (NCES) and the regional percentages were obtained from the 1990 National Transcript Study (Westat, 1993).

The compuration of the science/mathematics course taking synthetic cohort statistic can be summarized as follows, using the example of algebra 1 :

Estimated proportion of students taking algebra 1 in state A

Estimated students in cohort

Algebra 1 enrollment (9-12)
$=\quad$ (Reported by State A)
Estimated number of students in cohort in grades 9-12 (from CCD and regional weights based on NAEP transcript study)
$=($ M9 X Aig $1 / 9)+($ M10 X Alg $1 / 10)+($ M11 X Alg $1 / 11)+(\mathrm{M} 12 \times \mathrm{Xlg} 1 / 12)$
where, M9 is the student membership for grade 9 (from NCES Common Core of Data) Alg $1 / 9$ is the percentage of 1990 graduates in state A's region that took algebra 1 in grade 9 (from Westat, Inc. transcript data files).
(Four regions designated by Westat-Northeast, North Central, South Central, and West.)

The synthetic cohort statistic for rates of course taking is not directly comparable to course taking rates based on student transcripts, such as from the 1990 national transcript study. Beyond differences in data collection methods (universe vs. sample), there are at least two reasons for the synthetic cohort estimate to vary from a true rate based on tracking individua! students. First, as with any synthetic cohort statistic, changes in policies or programs over a 4 -year period of time (such as changes in state graduation requirements) that affect student hehavior (such as course taking) are not accounted for by the statistic. Second, state course enrollment
totals can include students taking a course a second time to earn a credit. The synthetic cohort statistic in this report, which is based on state cross-sectional counts, may be slightly higher than the true rate based on tracking individual students (who are typically counted only once per course credit). Currently, no data are available by state to determine the number of students repeating courses.

Variability is added to the state estimates through the weighted student membership based on regional weights. Since the weights are not state specific, each estimate has variability. For this reason, estimates over 95 percent of students cannot be made with precision and enrollments at this level are shown in Tables 5 and 8 as $95+$ percent.

Course enrollment rates are based on enrollment as of fall 1991. Some states coilect data on student course taking for fall and spring semesters. The state comparisons are based on cross-sectional data collected as of October 1. The indicator does not account for variation in course taking as of the spring semester.

Imputation of estimated proportion of high school graduates taking selected mathematics and science courses for nonreperting states.

In 1991-92, 3s states were able to report course enrollment data to CCSSO. To obtain a national total for the estimated proportion of graduates taking selected mathematics and science courses, the state proportions were imputed. The following formula was used for imputation:

Estimated proportion of students taking algebra 1 in nonreporting state B
$=($ Reg. avg. $\%$ taking algebra 1 (9-12) \times state B student membership (9-12) Sum of estimated numbers of students in cohort in grades 9-12 (from CCD and regional weights based on NAEP transcript study) (as above)
where, Reg. avg. \% taking algebra 1 is the average (meanj percent of students taking algebra 1 among the reporting states in state B 's region.

Imputation of number of teachers per field (in mathematics, biology, chemistry, physics, and earth science) for nonreporting states.

Imputed number of teachers of inathematics in state C

Regional ratio students/teacher

Regional ratio
mathematics teachers to $=$ State mathematics teachers (9-12) averaged for states in region
$=$ State student membership (9-12) Regional ratio students/teacher
x
Regional ratio of mathematics teachers to total teachers (9-12)
averaged for states in region
$=$ State student membership (9-12) State total teachers (9-12) State total teachers ($9-12$)
total teachers

APPENDIX D

DIRECTORY OF CCSSO COURSE CATEGORIES BY STATE COURSE TITLES

State Science and Mathematics Indicators
(Fall 1991)

CCSSO INDICATORS

Science Course Categories
State Course Titles (from State data forms)

Grades 7-8

General Science, 7-8
General Science 7, 8
Earth/Life/Physical Science 7, 8
Life Science, 7-8
Life Science, 7, 8
Earth Science, 7-8
Earth Science, 7, 8
Physical Science, 7-8
Physical Science 7,8
Integrated Science 7-8
Science 1, 2; SS\&C Science (Scope, Sequence, \&
Coordination); Integrated Science, Science 7, 8
Grades 9-12
Biology, 1st Year
Biology I; General; College Prep.; Regents;
Introductory
Biology, 1st Year, Basic/Applied
Basic Biology; Applied; Life Science; Biomedical
Ed.; Animal Science; Horticulture Sci.; Bio.
Science; Health Science; Nurrition; Man \&
Disease; Agricul. Science; Fundamentals of Biology
Biology, 2nd Year, Advanced Placement
Advanced Placement Biology
Biology, 2nd Year, Advanced
Biology II; Advanced; College; Psychobiology;
Physiology; Anatomy; Microbiology; Genetics;
Cell Biology; Embryology; Molecular Biology;
Invertebrate/Vertebrate Biology
Biology, 2nd Year, Other
Zoology; Botany; Environmental Education,
Biomedical careers; Field Biology; Ecology;
Marine Biology; Other Biological Sciences
Chemistry, 1st Year
Chemistry I; General; Introductory; Regents
Chemistry, 1st Year Applied
Applied Chemistry; Consumer Chemistry;
Technical Chemistry; Practical Chemistry;
Chemistry in the Community
Chemistry, 2nd Year, Advanced Placement Advanced Placement Chemistry

Chemistry, 2nd Year, Aduanced
Chemistry II; Advanced: College; Organic:
Inorganic; Physical; Biochemistry; Analytical
Physics, 1st Year
Physics I; General; Regents; Introductory
Physics, 1 st Year, Applied
Applied Physics; Electronics; Radiation Physics;
Practical Physics
Physics, 2nd Year, Advanced Placement Advanced Placement Physics
Physics, 2nd Year, Advanced
Physics II; Advanced; College; Nuclear Physics; Atomic Physics
Pbysics, 2nd Year, Other
Electricity, Astronomy (or under Earth Science, 2nd year)
Earth Science, 1st Year
Earth Science; Earth-Space Science; Regents Earth Science
Earth Science, 1st Year, Applied Applied Eartlı Science; Fundamentals of Earth Scieince; Soil Science
Earth Science, 2nd Year, Aduanced/Other Advanced Earth Science; Earth Science II; Oceanography; Meteorology; Astronomy, Geology
General Science
General Science, Basic; Introductory; Unified; Comprehensive Ideas of Investigations in Science; Life/Physical Science; Earth/Life/Physical Science
Physical Science
Physical Science; Interaction of Matter and Energy; Applied Physical Science
Integrated Science
Science 3, 4, etc.; SS\&C Science; Integrated
Science 9, 10.
Other Science
Technology; Science/Math; Engineering; Bioengineering; Special Interests Science; Energy;
Research Topics; Science/Technology/Society; Aerospace Science

Mathematics Course Categories

State Course Titles (from state data forms)
Grades 7-8
Remedial Math, Grade 7
Remedial Math 7
Math, Grade 7, Regular
Math 7; Exper. Math 7
Math, Grade 7, Accelerated/Prealgebra
Accelerated Math 7; Prealgebra; Introductory
Algebra; Enriched Math 7

Remedial Math, Grade 8
Remedial Math 8
Math, Grade 8, Regular
Math 8; Exper. Math 8-SS MCIS
Math, Grade 8, Enriched
Prealgebra; Accelerated Math 8; Honors Math 8
Math Grade 8, Algebra 1
Algebra 1; Beginning Algebra; Elementary
Algebra

Grade 9-12

Review Mathematics

Level 1

General Math 1; Basic Math; Math 9; Remedial Math; Developmental; H.S. Arithmetic; Math Comp Test; Comprehensive Math; Terminal Math
Level 2
General Math 2; Vocational Math; Applied;
Consumer; Technical; Business; Shop; Math 10; Career Math; Practical Math; Essential Math; Cultural Marh
Level 3
General Math 3; Math 11; Intermiediate Math;
Applied Math II
Ler. 14
General Math 4; Math 12
Informal Mathematics
Level 1
Prealgebra; Introductory Algebra; Basic; Applications; Algebra IA (first year of two-year sequence for Algebra 1); Noncollege Algebra

Level 2

Basic Geometry; Informal; Practical; Core Level 3

Basic Algebra 2; Mathematics of Consumer
Economics; (A course after Prealgebra prior to Algebra 1)

Formal Mathematics

Level 1

Algebra 1; Elementary; Beginning; Unified Math I; Integrated Math 1; Algebra 1B (second year of two-year sequence for Algebra 1)
Level 2
Geometry; Plane Geometry; Solid Geometry; Integrated Math 2; Unified Math II
Level 3
Algebra 2; Intermediate; Algebra and Trigonometry; Algebra and Analytic Geometry; Integrated Math 3; Unified Math III

Level 4

Trigonometry: Precalculus, Advanced Algebra;

Algebra 3; College Algebra; Precalculus;
Analytic/Advanced Geometry; Trigonometry and
Analytic/Solid Geomerry; Math Topics; Intro. to
College Math; Number Theory; Math IV; College
Prep Sr. Math; Elem. Functions; Math Analysis;
Finite Math

Level 5

Calculus and Analytic Geometry; Calculus;
Abstract Algebra; Differential Equations;
Multivariate Calculus; Linear Algebra;
Probability; Statistics; Theory of Equations;
Vectors/Matrix Algebra
Level 5, Advanced Placement
Advanced Placement Calculus (AB, BC)

Computer Science Course Categories

State Course Titles (from state data forms)

Grades 7-8

Computer Science/Computer Programming Introductory Programming (any language)

Grades 9-12

Computer Science/Programming I Introductory Programming (any language); Programming I; Computer Language I
Advanced Computer Science/Programming II Advanced Programming; Programming II; Computer Language II
Computer Science, Advanced Placement Advanced Placement Computer Science

Source: Instructrons and Reportang Forms for Data on Science and Mathernatics Education in (each state). Council of Chicf State School Officers, State Education Assessment Center, Washington, DC, Fall 1991.

REFERENCES

Aldrich, H. (1983, July 27). Teacher shortage: Likely to get worse before it gets better. Education Week, 2, 39.
American Association for the Advancement of Science. (1989). Project 2061: Science for all Americans. Washington, DC.: Author.
Blank, R.K. (1986). Science and mathematics indicators: Conceptual framework for a state-based net work. Washington, DC: CCSSO, State Education Assessment Center.
Blank, R.K. (1991a, November 15). Enrollments indicate math, science progress. Leadership News (American Association of School Administrators), pp. 4, 6.
Blank, R.K. (1991b). Recommendations from aduisory task force on state science-math indicators for 1991-92. Washington, DC: CCSSO.
Blank, R.K. (1993, Spring). Developing a system of education indicators: selecting, implementing, and reporting indicators. Educational Evaluation and Policy Analysis, 15(1), pp. 65-80.
Blank, R.K., \& Dalkilic, M. (1991). State indicators of science and mathematics education: 1990. Washington, DC: CCSSO, State Education Assessment Center.
Blank, R.K., \& Dalkilic, M. (1992). State policies on science and mathematics education: 1992. Washington, DC: CCSSO, State Education Assessment Center.
Blank, R.K., \& Engler, P. (1992). Has science and mathematics education improved since A Nation at Risk? Washington, DC: CCSSO, State Education Assessment Center. Reprinted in ERS Spectrum, Spring 1992, V. 10, W. 2, pp. 18-26.
Blank, R., \& Espenshade, P. (1988). 50-State analysis of education policies on science and mathematics. Educational Evaluation and Policy Analysis, 10(4). pp. 315-324.
Blank, R.K., \& Schilder, D. (1990). State policies and state role in curriculum. In Politics of curriculum and testing. 1990 Yearbook of AERA Politics and Education Association. London: Taylor \& Francis.
Blank, R., \& Selden, R. (1987). Plan for "ideal" indicators and specifications for an inventory of state indicators and data on science and rathematics education. Washington, DC: CCSSO, State Education Assessment Center.
Bobbit, S.A., Faupel, E., \& Burns, S. (1991). Characteristics of stayers, movers, and leavers: Results from the Teacher Follourup Survey, 198889. Washington, DC: National Center for Education Statistics, U.S. Department of Education.

Carnegie Forum on Education and the Economy. (1986). A nation prepared: Teachers for the 21 st century. The report of the Task Force on Teaching as a Profession. Washington, DC: Author.
Clune, W.H., White, P., Sun, S., \& Patterson, J. (1991). Changes in high school course-taking, 1982-88: A study of transcript data from selected schools and states. New Brunswick, NJ: Consortium for Policy Research in Education.
College Board (1992). Advanced Placement Program: National and 50 states summary reports. New York, NY: Author.
Council of Chief State School Officers. (1985). Assessment and evaluation plan of the Committee on Coordinating Education Information and Research. Washington, DC.: Author.
Council of Chief State School Officers. (1987-1993). State education indicators. (Individual reports for 1987, 1988, 1989, 1990, 1993). Washington, DC: CCSSO, State Education Assessment Center.
Council of Chief State School Officers. (1988a).Survey of states on availability of data on science and mathematics education. Washington, DC: CCSSO, State Education Assessment Center.
Council of Chief State School Officers. (1988b). Final report: Assessing mathematics in 1990 by the National Assessment of Educational Progress. Washington, DC: CCSSO, State Education Assessment Center.
Council of Chief State School Officers. (1991). Instructions and reporting forms for data on science and mathematics education in (each state). Washington, DC: CCSSO, State Education Assessment Center.
Council of Chief State School Officers. (1992). Planning meeting on improving national and state data on the implemented curriculum. Washington, DC: CCSSO, State Education Assessment Center.
Darling-Hammond, L. (1984). Beyond the commission reports: The coming crisis in teaching. Santa Monica, CA: The Rand Corporation.
Dossey, J.A., Mullis, I.V.S., Lindquist, M.M., \& Chambers, D.L. (1988). The mathematics report card. Are we measuring up? Princeton, NJ: Educational Testing Service.
Goertz, M.E. (1988). State educational standards in the 50 states: an update. Princeton, NJ: Educational Testing Service.
Goodlad, J.I. (1984). A place called school: Prospects for the future. New York: McGraw-Hill.
Horn, L. \& Hafner, A. (1992). A profilc of American eighth-grade mathematics and science instruction. Washington, DC: U.S. Department of Education, National Center for Education

Statistics.
Husen, T. (Fd.). (1967). International study' of achiclement in mathematics: A comparison of twelve countries (Vols. 1 and 2). New York: John Wiley.
Johnston, K.L., \& Aldridge, B.G. (1984). The crisis in science education: What is it? How can we respond? Journal of College Science Teaching, 14(1), 20-28.
Jones, L.R., Mullis, I.V.S., Raizen, S.A., Weiss, I.R., \& Weston, E.A. (1992). The 1990 science report card: NAEP's assessment of fourth, eighth, and twelfth grades. Washington, DC: U.S. Department of Education, National Center for Education Statistics.
Jones, L.V., Davenport, E.C., Bryon, A., Bekhuis, T., \& Zwick, R. (1986). Mathematics and science test scores as related to courses taken in high school and other factors. Journal of Educational Measurement, 23(3), 197-208.
Kolstad, A., \& Theme, J. (1989). Changes in high school course work from 1982 to 1987: Evidence from two national surveys. Paper presented at the annual meeting of the American Educational Research Association. Washington, DC: U.S. Department of Education, National Center for Education Statistics.
Kominski, R. (1987). School enrollment, social and economic characteristics of students: October 1993. Current Population Reports, Series P-20, No. 413. Washington, DC: U.S. Bureau of Census.
Koretz, D. (1992). Evaluating and validating india tors of mathematics and science education. A report for the National Science Foundation. Santa Monica, CA: Rand.
McKnight, C..C.., Crosswhite, F.J., Dorsey, J.A., Kifer, E., Swafford, J.O., Travers, K.J., \& Cooley, T.J. (1987). The underachieving curriculum: Assessing U.S. school mathematics from an inter national perspective. Champaign, IL: Stipes Publishing.
Miller, J.D. (1993). Student persistence in mathematics. DeKalb, IL: Northern Illinois University, Longitudinal Study of American Youth.
Monk, D.H. (1993). Subject area preparation of secondary mathematics and science teachers and student achievement. Ithaca, NY: Cornell University, Department of Education.
Mullis, I.V.S., Dossey, J.A., Owen, E.H., \& Phillips, G.W., (1991). The STATE of mathematics achievement. Washington, DC: U.S. Department of Education, National Center for Education Statistics.
Mullis, I.V.S., Dossey, J.A., Owen, E.H. \& Phillips, G.W. (1993). NAEP 1992 Math Report Card for the Nation of the States. Washington, DC: U.S.

Department of Education, NCES.
Murnane, R.J., \& Raizen, S.A. (Eds.). (1988). Improving indicators of the quality of science and mathematics education in grades K-12.
Washington, DC: National Research Council, National Academy Press.
National Center for Education Statistics (1985). Digest of Education Statistics. Washington, DC: U.S. Department of F.ducation.

National Center for Education Statistics (1989). Projections of education statistics to 2000. Washington, DC: U.S. Department of Education.
National Center for Education Statistics (1990). Digest of Education Statistics. Washington, DC: U.S. Department of Education.

National Center for Education Statistics (1991). Trends in academic progress: Achievement of American students in science, 1970-90, mathematics, 1973-90, reading, 1971-90, and writing, 1984-90. Washington, DC: U.S. Department of Education.
National Center for Education Statistics (1993). Unpublished data from the Schools and Staffing Survey, Public School Teacher Questionnaire, 1990-91. Washington, DC: U.S. Department of Education.
National Commission on Excellence in Education. (1983). A nation at risk: The imperative for educational reform. Washington, DC: U.S. Department of Education.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
National Education Goals Panel. (1991). The National Education Goals Retort: Building a nation of learners-1991. Washington, DC: National Education Goals Panel.
National Education Goals Panel. (1992). The National Education Goals Report: Building a nation of learners-1992. Washington, DC: National Education Goals Panel.
National Governors' Association. (1986). Time for results: 'The gol'crnors' 1991 report on education. Washington, DC: National Governors' Association, Center for Policy Research and Analysis.
National Science Board Commission on Precollege Education in Mathematics, Science, and Technology. (1983). Educating Americans for the 21 st century. Washington, DC: National Science Foundation.
National Science Board. (1991). Science and engineering indicators-1991. Washington, DC: National Science Foundation.
National Science Teachers Association. (1992, October/November). Thirty states have science frameworks, reports CCSSO. NSTA Reports. Washington, DC: Author. pp. 1, 8, 9.

National Study Panel on Education Indicators. (1991). Education counts: An indicator system to monitor the nation's educational healih. Washington, DC: U.S. Department of Education, National Center for Education Statistics.
Oakes, J. (1986). Educational indicators: A gl ide for policymakers. New Brunswick, NJ: Center or Policy Research in Education.
Oakes, J. (1989). What educational indicators? The case for assessing the school context. Educational Evaluation and Policy Analysis, 11(2), pp. 181199.

Oakes, J. (1990a). Lost talent: The underparticipation of women, minorities, and disabled students in science. Santa Monica, CA: The Rand Corporation.
Oakes, J. (1990b). Multiplying inequalities: The effects of race, social class, and tracking on opportunities to learn mathematics and science. Santa Monica, CA: The Rand Corporation.
Pelavin, S., \& Kane, M. (1990). Changing the Odds: Factors Measuring Access to College. New York: College Entrance Examination Board.
Porter, A.C. (1991). Creating a system of school process indicators. Educational Evaluation and Policy Analysis, 13(1), pp. 13-29.
Porter, A.C., Smithson, J., \& Osthoff, E. (1992). Standard Setting as a Strategy for Upgrading High School Mathematics and Science. Madison, WI: Wisconsin Center for Education Research.
Raizen, S.A., \& Jones, L.V. (Eds.). (1985). Indicators of precollege education in science and mathematics. Washington, DC: National Academy Press, Committee on Indicators of Precollege Science and Mathematics Education, National Research Council.
Rock, D., Braun, H.I., \& Rosenbaum, P.R. (1985). Excellence in high school education: Crosssectional study, 1980-1982. (Final Report). Princeron, NJ: Educational Testing Service.
Rollefson, M.R. (1991). Sources of newly hired teachers in the U.S.: Results of the 1987-88 schools and staffing survey. Washington, DC: National Center for Education Statistics.
Schmidt, W.H. (1992). Instructional practices and opportunity to learn mathematics $\hat{*}$ science population 2. (Survey of Mathematics and Science Opportunities. Third International Mathematics and Science Study). East Lansing, Michigan: Michigan State University.
Sebring, P.A. (1987). Consequences of differential amounts of high school coursework: Will the new graduation requirements help? Educational Evaluation and Policy Analysis, Vol. 9, Number 3.

Shavelson, R., McDonnell, L., Oakes, J., \& Carcy, N. (1987). Indicator systems for monitoring mathematics and science education. Santa

Monica, CA: Rand Corporation.
Shavelson, R., McDonnell, L., Oakes, J., \& Carcy, N. (1989). Indicators for monitoring mathematics and science education: a sourcebook. Santa Monica, CA: Rand Corporation.
Stecher, B.M. (1992). Describing secondary curriculum in mathematics and science: Current status and future indicators. (Report for the National Science Foundation). Sanlu Monica, CA: Rand.
Task Force on Education for Economic Growth. (1983). Action for $\because \because$ cellence: A comprehensive plan to improve our nation's schools. Denver, CO: Education Commission of the States.
Twentieth Century Fund Task Force. (1983). A report of the Twentieth Century Fund Task Force on federal elementary and secondary education policy. New York: Author.
Viadero, D. (1993, March 10). The coherent curriculum. Washington, DC: Education Week. pp. 10-11.
Walberg, H.J. (1984). Improving the productivity of American schools. Educational Leadership, 41(8).
Weiss, I.R. (1987). Report of the 1985-86 National Survey' of Science and Mathematics Education. Research Triangle Park, NC: Research Triangle Institute.
Westat, Inc. (1993). The 1990 High School Transcript Study tabulations: Comparatue data on credits earned and demographics for 1990 , 1987, and 1982 bigh school graduates. Washington, DC: U.S. Department of Education, National Center for Education Statistics.

REPORTS AND PAPERS AVAILABLE FROM CCSSO

(Free to states)
State Indicators of Science and Mathematics Education-1993. State and National Trends: New Indicators from the 1991-92 School Year. (1993) \$15.00

State Indicators of Science and Mathematics Education-1990. (1991) \$12.00
Analysis of State Education Indi - State Profiles aind NAEP Results Related t - slicies and Practices. (1993) \$12.50
Developing a System of Education Indicators: Selecting, Implementing, and Reporting Indicators. (1993) \$2.00
State Policies on Science and Mathematics Education-1992. (1992) \$5.00
Has Science and Mathematics Education Improved Since A Nation at Risk? (1992) $\$ 4.00$
State Data on Teacher Supply, Demand, and Qualifications. (1991) \$2.00
Indicators of Science and Mathematics Education: Prouiding Tools for State Policymakers. (1988) $\$ 2.00$

Copies of the reports and papers can be c - dered by sending a check or purchase order (price includes mailing and handling) to:

Doreen Gruebel
Council of Chief State School Officers
One Massachusetts Avenue NW', Suite 700
Washington, DC 20001-1431.

[^0]: U.S. DEPANTMENT OF EDUCATION Otice of Educalional Reseatich and Improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)
 OXThis document has been reproduced an recelved from the person of orgenize in originaling il

 - Minor changes nave been made to improve reproduction quality - Points of view or opunions stated in this docu.
 ment do not necessarily represent ofticiat OERI position or policy

[^1]: dent characternetico, fitatictal reworew, ind paremal b,akground were net
 these matiators are part of the (ouncil's general anomal report on State Fdueatoon Indicaters, und these data are used is contevtual mformatem where appropriate.

[^2]: 'The Natomal Assessment Gevernang Board estahlished achevement levels for interpreting the NAl:l' mathemathes scores at grades 4, 8, and 12. The levels at grade is were summarmed as tollons. Basic-Fighth grade sudents should exhihit everence of conceptual and prosedurai understanding of the five NAEP content areas. This level of performance signfies an understanding of arthunctic operations, including estumatem on whole numbers. decimals, fractions, and percents. Proficient-Eyghth grade students should apply mathematical concepts and procedures consistently to complex prohIems in the five content areas. Advanced-Fighth grade students thould lx able to reach beyond the recognition, identification. and application of mathematical rules in order ongeneralize and syathesize concepts and pronciples an the tive NAFI areas (.Aullis, et al., 1993).

[^3]: Note v Sigulicanty higher than 1990 NAEP mathemalus profictency al abou' the $95^{\circ} \mathrm{n}$ contidencie levei Souice Mullis elat. NAEP 1992 Mathematics Report Card tor the Nation and the States. US Department of Ejtcalion 1993 (see for slandard errors ol estimales)
 Ciunc lot Chwe State School Oilicers. Siate Education Assessme: : Center. Washington. DC. 1993

[^4]: Note Aiabama Black 19° c (32) Figure in parsonthesis (32) is nercent d' all students in minority gioup
 -Hawait - AsianPPacilt Islander idaho. Mame. New Mexico. North Dakota. Kyonung : Amencan Indian - Resnondents too les for a ritrable siafe eslimate

 Source Multis et al NAEP 1992 Malhematics Repont Card for the Natmon and the Stites. US Deparmett ot Education. 1993 ; see for standard errors of estrmates;
 Councri of Chuer State School Officers. Slaie Education Assessment Center. Washngion DC. 1993

[^5]: Note State lolals include public and pravale schools Minorily sludents - sum of black. Hispanic. Astan/Pacilic
 Istander. American hiderl.
 Solifce: The College Board. Advanced Placement Program. Natona! and 50 States Summaiy Reports. New York 1992 Council of Chiel State School Olhcers, State Fofucation Assessment Center. Washmglon. DC. 1393

[^6]: Nole State totals include public and private schools Winorily students = sum of black. Hispanic. Asian/Pacific Islander. American Indian
 Source The College Board. Advanced Placement Program. National and 50 States Summary Reports. Neir York. 1992
 Councill of Chiel State School Ollicers. State Education Assessmenl Center. Washington. DC. 1903

[^7]: The statistical analysis of NitEP results by state showed that the sociee conemac tatus (SFS) background of stendents is strongly related to awenge math proficelcy and to curroulum emphasis of teachers, and the a merage Sth of studenes in a state can acconn for most of the variance in math pretheney. The anals sis in this section artempts to show differences an curriculum conphass of teachers by state, with the undersanding that at least part of the state differences are due to the mfluence and expectations of parents and the rewoures dailable un the school community- (represented by a measure of SESI

[^8]: Note Totalinctudes average ol $2^{\circ} \mathrm{o}$ "Other Mathemahcs "Detaware. Kansas. Wisconsul. and Wroming changed data collection imstruments between 1989 and 1991 - Dala nol available
 Source State Departments ol Educalion. Data on Pubtic Schools. Fall 1991. Camomia Fall 1990. NCES. CCD Fall Membeishmp 1991
 Council of Chul Siate Schloor Olficers. Siale Edication Assessment Center. Washington. OC. 1093

[^9]: 'Farollments in first-yesr algelora comprise the large majority of entollments at the Formal Math l.evel I. Hewever, tollowing the N(TM Curriculum Standards, many states and destrets advocite an megerated
 geometry, algetra 2 sequence of separate courses.

[^10]: In 1990, the Science-Math indicators reported high shool course enrollment data for 38 states. Between the data coltection periods of 1989 and 1991,12 states changed ther data collection torms. Changes in forms can produce significant differemes in course enrollments for some categories. Due to hudgetary restrames, 3 states reporting in 1990 could not report data for 1992, and 3 additional states began reporting the data in 1992.

 The gate data may include students taking a course more than onke, atounting for the 2 percent higher enrollment reported trom state data a compared to the natronal transcript data (Westat, 1993).

[^11]: Note - - Data not avatiable
 Source Slale Departments ol Educathr, Data on Public Schnots Fall 1991 Cahdernta Fall t990. NCES cCo Fati Membership 1991 Council of Chet State School Olthers State Education Assessment Ceniel Washngion. DC. 1993

[^12]: Source State Departments ol Education Data on Public Schoois. Fat 1991 Cahtormad Call 1990 Councul of Chel State Schooi Olticers State Education Assessmem Center. Washington DC 1993

[^13]: "By agreement with the five states, individual city names are not revealed because the dara are part of a pilot study of the ciey indicators.

[^14]: Soura: Westal the the 1990 High School Transcropt Sludy Tabulatoons, US

[^15]: Nole Total by subject - All teachers assigned lo teach subject 1 or more periods/Classes-Dala not available
 National totals include imputation for nonreperting slates
 Source State Depariments of Education. Dala on Public Schools. Fall 1991. Calmurniâ. Fail 1990
 Counctl ol Chuef State School Oificers Slate Education Assessment Center. Washington. DC. 1993

[^16]: - Studentedeacher ratio $=$ student membership divided by number of teachers with man assignment in a subject plus .25 times the number of teachers with other assignment in the subject. This estimate of total assigned teacher time by subject was developed by the Council to standardize state teacher dita by subject, which is typically not reporied by teacher full-rme equivalents (FTEs).

[^17]: Note Studentpeacher ratio $=$ student membership divided by leacher lime assigned lo subiect number of main assignment
 leachers + 25 limes number with cther assignment) Math totat: All leachers assigned to math 1 or more periodsiclasses - Data not evariable
 Source Stale Departments of Education Data on Public Schools. Fall 1991. Cahlornla. Fall 1990
 Council or Chuet State Schooi Olficers. Slate Education Assessment Center. Washington. DC. 1993

[^18]: Source State Departments of Education. Data on Public Schools. Fall 1989. N Carotina. Fall 1988 Council or Chiel State School Othicers. State Educalion Assessment Cenle:, Washinglon, DC. 1990

[^19]: Note New tst year = 0 year feaching experrence. Newly hred - 0 year exoerrence in current distrct Scrence $=1$ or more periods assigned in brology. chemistry or physics adfusted ior 1/3 of teachers with mulliple science assignments Math = 1 or more Deriod assigned im math Source State Depariments ol Education, Data on Public Schools Fall 1991. Calfornia, Fall 1990 ... Oata not avallable
 Council ol Chiel State School Officers. State Educaton Assessment Center Washngton, DC 1993

[^20]: Notes Percent with major = Percent of assigned leachers with an undergraduate or graduate degree with a majo ir matt iscience heidlor naith education (science ecication). see standard errors ior estumates in Appendix Table B-18 - Respondents too lew lor a reliable state estimate
 Source NCES Schools and Slating Survey Public School Teachers, Washmolon OC. US Department nt Edtuation Spring 1991
 Council ol Chiel Staie School Ollicers. Stale Educalton Assessment Center. Wastungton. DC 1993

[^21]: "Difference of means squnticant at the .00f level of statistical signoficance. This funding indicates a corretation between seachers' coursework in math and students math proficency, but there may be other factors that account for the relationship. For example, students with higher achievement entering eighth grade may be assigned to teachers with more coursework in mathematics.

[^22]: Notes a Less than 1 percent er classes. - Respondents too few for a rehabte state estmate. See standard errors in Appendix Tabte B. 21
 Source NCES. Schools and Stathng Survey. Fublic School Teachers. Sprmg 1991
 Council of Conet State School Oticers. State Education Assessment Center. Washmglon. OC. 1993

[^23]: -()ther amalwes whow that the state pereent of eeachers reporting a vartage of moterials and rewources is correlated weth the state SLS.

 - Difference of means significant at the . 02 level of statistical signficasce.
 firj

[^24]: Source Mullis et ai . The State of Mathematics Achuevement. NAEP's 1990 Assessment of the Nation and the Frial Assessment of the States. US Department of Education, 1991

[^25]: Note $>$ Sign.icanily higher than 1990 NAEP maihemalics proiciency at about the $95^{\circ} \mathrm{v}$ conidence level
 Source Mulls et al. NAEP 1992 Mathematics Report Card for the Nation and Ihe States. US Department of Education. 1993 (see tor slandard errors of estimates) Council of Chiet Siate School Ollicers. State Educaton Assessment Center Washinglon. OC. 1993

[^26]: Source. The College Board, Advanced Placement Program. National and 50 Slate Summary Reports. New York 1992 Council or Chuet State School Officers. State Educalion Assessment Center. Washrrivion. DC. 1993

[^27]: Source Mullis et al. The State of Mathematics Achievement NAEP's 1990 Assessment of the Nation and the frial Assessment of the S:ates. US Department of Education. 1991 (see for standard errors of estimates)
 Council of Chief State School Oficers. State Education Assessmeni Center. Washington. DC. 1993

[^28]: Note Class time $=$ Slate average of feacher-reported hours spent leaching subjecl "last week" (sell-contained elementary classes) Standard errors ior naltonal average are 05 math. 05 science State siandard errors vary for math from. 14 (Alaska) to of (Illinous), and for science from 10 (Ca hiforma) to 61 (South Carolina) -- Respondents loo lew for a reliable state estimate
 Source NCES. Schools and Stathing Survey. Pubic School Teachers. Spring 1991
 Counct ol Chuel State School Oficers Sate Education Assessment Center. Washington. OC. 1993

[^29]: -Science taught in sell-contaned classroms rot mituded
 Note Enroliments in SS \& C Courses in Callornia Iowa and Puerio Rico not counted in 1991.92 - Dala not avallable
 Source State Deparments of Education. Data on Public Schools Fall 1991 . Caltornia Fall 1990 NCES CCD Fall Mendership 1991
 Cuuncll o! Chiet Stale School Olticers, State Education Assessment Center. Washargton DC 1093

[^30]: "ivath taught in self-contaned ctassiooms nol miluded. Dala wiwt avatable
 Source Siate Departments ol Education. Data on Pubic Schoots. Fall 1991 Catiferna Fall 1990 NCES CCD Fall Membersnip 1991

[^31]: Note - Data not avalable
 Source State Departments of Education. Data on Public Schouls 「ali 1991. Californa. Fall 1990. NCES Digest ol Educalion Statishics. 1991 Counctl of Chiet State School Olficers State Education Assessment Center. Washnyton. DC. 1993

[^32]: Note - Oata not available
 Source State Departments ol Education Data on Public Schools. Fall 1991. Callorma Fall 1990. NCFS CCO Fall Membership 1991
 Council of Chrel Slaie School Officers. Slate Education Assessment Center Washington. OC, 1993

[^33]: Noie - - Data not avalable
 Source suite Departments of Educaluon Data n Puble Schools. Fail 1931 Calwernia Fall 1990. iCES. CCD Fall Membershir 1991
 Council ul Cher State Schoul Orfiers. Staie Educzion Assessment Ceriter. Washinglon. DC, 1993

[^34]: Note Enroliments in SS \& C courses in Caliloinia, lowa and Puerto Rico not counied in 1991-92 - Data not avaliable

[^35]: Note - Data not avalatle
 Source State Depathents ol Education. Data on Putlic Schools. Fall 1991. Caiforma. Fall 1990. NCES. CCD Fall Membership 1991 Countri of Chet Staic Schonl Oftrers Slate Education Assessment Center. Washngion DC. 1993

[^36]: Source Staie Depatments of Education. Data on Pubi, Schools. Fall 1991. Califorma. Fatl 1990. NCES. CCD Fall Membership 1991 Council ol Chrel State School Ohicers. State Education Assessment Center. Washington. DC. 1993

[^37]: Source State Deparments of Education Data on Public Schools Falf 1991 Callorria Fall 1990. NCES. CCD Fall Membership 1991
 Council ol Chiel State School Officers, Siate Education Assessmen: Ceniter, Washington, DC. 1993

[^38]: -Aizona. Colorado Science. all lieids. Delaware Marridssignmmni only
 Note Man Assignment = Hall lime or more assigned lo sujuect or primary assignment Other = Less than hall lume assigned to subject Naticnal tolals include impulation for nonreporing states - Data nol available

[^39]: 'Deiamare Main assignment only
 Nole Main Assignment = Haff time or more assigned to subject or prmary assignment Other - Less than hall inme assigned to subrect fil'ona' iolals include imputation for nonreporting slates - Data not available

[^40]: - Deldware Mandossignemin orim

 Note Main Assignment = Hall lme or more assigned to subject or primary assignment Other - Less than halltme assigned to subject - Data not aratiable

[^41]: Source Slate Deparments ut Education Data on Public Schools. Fall 1991. Callorma Fall 1990

[^42]: - Oelaware Main assignment only

 Note. Marn Assignment - Hall time or more assigned to subject or primary assignment Other = Less than hall lime assigned to subject. - Data not available.

[^43]: Note - No State Certification Available. IHE = State-approved program of institutions or higher education; Physical Science Centification Maryland-40 credtls. Utah - 69 qitr credils -Credits" = Semester credils, untess quatter credits specilied
 Source State Deparfments of Education. Mathematics and Science Supervisors. Winter 1992
 Council of Chief State School Officers, State Education Assessment Center. Washinglon, DC. 1993

[^44]: Note "No" tor Separale Certalication=Slate leacher cerlification tor these grades under elementary or secondary certification.

 - No State Requrernent, IH[- State-approved program of insitutions ol higher education. "Credts" = Semester credils. untess quarter credils specilied

[^45]: Note Several state percentaqes include leachers witi general secondary certification Alabams-Main. 1 leacher. Other. 21 leachers.
 Cahlornia-Main, 1004 teachers. Other. 680 teachers. Connecticul-Main, 36 teachers. Other, 32 teachers. Iltmors-Main. 2901 teachers.
 Other 104 leachers. Monlana--Main, 7 leachers. Other, 27 leachers. North Carchna-Main, 196 leachers. Other. 406 teachers. Ohin-
 Main. 1 leacher. Other. 8 leachers - Data not avallable

[^46]: -inciudes all science
 Note General secondary certilication nciuded in broad field category Alabama-Man. 2 teachers Other. 4 leachers. Californa-Main. 323 leachers. Other 251 teachers. Connecticut - Main. 1 leacher. Other. 16 teachers. Mllno:s-Marn. 1017 leachers. Other. 47 leachers, North Carolina-Main. 13 teachers. Other. 148 feachers - Data not avalable

 Source State Depatments of Education. Data on Public Schools. Fall 1991. Cahlomia. Fall 1990 Council of Chiel State School Officers. Slate Education Assessmem Center. Washington. DC. 1993

[^47]:
 Otrat 31 teachers. Imnois-Main 261 leachers. Other 6 leachers Noth Carelina - Other 1 leacner -. Dala not avalahte

[^48]: Nelf Neis 1st year - 0 years ieaching expenence. Newly hired 0 years expenience in curreni dislacl Science - 1 or more periods assigned in Brology Chemistry. or Physics dopusted lor ili ol leachers wilh mulliple science assignments Math $=1$ or more periods assigned in Math. Mmorily - Suni of Black Hispanic Asiani Pacific Islander American Indian (Data on lour categories of race/ethnicily availatio from CCSSO) - Dala not avallable

